Math, asked by kruthikaBU, 6 months ago

if sinx+tanx=m and tanx-sinx=n then m^2-n^2​

Answers

Answered by abhi569
5

Answer:

4sinx.tanx

Step-by-step explanation:

Add m and n:

=> (sinx + tanx) + (tanx - sinx) = m + n

=> 2tanx = m + n

Subtract n from m:

=> (sinx + tanx) - (tanx - sinx) = m - n

=> 2sinx = m - n

Multiply (m + n) and (m - n):

=> (2tanx)(2sinx) = (m + n)(m - n)

=> 4tanx.sinx = m² - n²

Answered by Anonymous
180

Step-by-step explanation:

Given :

  • if sinx+tanx=m and tanx-sinx=n

To Find :

  • then m^2-n^2

Solution :

m² - n² = (m + n) × (m - n)

m + n = (tanx + sinx) + (tanx - sinx)

= 2tanx

m - n = (tanx + sinx) - (tanx - sinx)

= 2sinx

m² - n² = 4 × tanx × sinx

Hence m² - n² = 4 × tanx × sinx

Similar questions