if sinx+tanx=m and tanx-sinx=n then m^2-n^2
Answers
Answered by
5
Answer:
4sinx.tanx
Step-by-step explanation:
Add m and n:
=> (sinx + tanx) + (tanx - sinx) = m + n
=> 2tanx = m + n
Subtract n from m:
=> (sinx + tanx) - (tanx - sinx) = m - n
=> 2sinx = m - n
Multiply (m + n) and (m - n):
=> (2tanx)(2sinx) = (m + n)(m - n)
=> 4tanx.sinx = m² - n²
Answered by
180
Step-by-step explanation:
Given :
- if sinx+tanx=m and tanx-sinx=n
To Find :
- then m^2-n^2
Solution :
m² - n² = (m + n) × (m - n)
m + n = (tanx + sinx) + (tanx - sinx)
= 2tanx
m - n = (tanx + sinx) - (tanx - sinx)
= 2sinx
m² - n² = 4 × tanx × sinx
Hence m² - n² = 4 × tanx × sinx
Similar questions