if sinx = ysin(x+a)
prove that dy/dx= Sin a/sin^2(x+a)
Answers
Answered by
3
Step-by-step explanation:
Sin(x−y)=sinx.cosy−siny.cosx
siny=x.sin(a+y)
x=sinysin(a+y)
Differentiating both sides
dx=sin(a+y).cosy.dy−siny.cos(a+y).dysin2(a+y)
Using Prerequisite (1)
dx=sin(a+y−y).dysin2(a+y)
dx=sina.dysin2(a+y)
So,
dydx=sin^2(a+y)sina
Similar questions