Math, asked by vershaduseja4052, 11 months ago

If Sinxcosy=1/4 and 3tanx=4tany then sin(x-y)

Answers

Answered by rishu6845
11

Answer:

sin \: ( \: x \:  -  \: y \: ) \:  =  \dfrac{1}{16}

Step-by-step explanation:

Given---->

sinx \: cosy \:  =  \dfrac{1}{4}  \: and \: 3 \: tanx \:  = 4 \: tany

To find ---->

value \: of \: sin \: ( \: x \:  -  \: y \: )

Concept used ----->

1)

tanx \:  =  \dfrac{sinx}{cosx}

2)

sin \: ( \:  \alpha  \:  -  \:  \beta  \: ) \:  =  \: sin \alpha  \: cos \beta  \:  -  \: cos \alpha  \: sin \beta

Solution----> ATQ ,

 \:  \:  \:  \:  \:  \: 3 \: tanx \:  =  \: 4 \: tany \\  =  >3  \: \dfrac{sinx}{cosx}  \:  =  \: 4 \:  \dfrac{siny}{cosy } \\  =  > 3 \: sinx \: cosy \:  =  \: 4 \: cosx \: siny \\ putting \: sinx \: cosy \:  =  \dfrac{1}{4}  \: in \: it \: we \: get \\  =  > 3 \: ( \:  \dfrac{1}{4}  \: ) \:  =  \: 4 \: cosx \: siny \\  =  > cosx \: siny \:  =  \dfrac{3}{4 \times 4}  \\  =  > cosx \: siny \:  =  \dfrac{3}{16}   \\ now \:  \\ sin  ( \: x  \:  -  \: y \: ) \:  =  \: sinx \: cosy \:  -  \: cosx \: siny \\ now \: putting \: sinx \: cosy \:  =  \dfrac{1}{4} \: and \: cosx \: siny \:  =  \dfrac{3}{16} \:  we  \: get \\  =  >  \: sin \: ( \: x \:  -  \: y \: ) \:  =  \:  \dfrac{1}{4} \:  -  \frac{3}{16} \\  =  > sin \: ( \: x \:  -  \: y \: ) \:  =  \dfrac{4 \:  -  \: 3}{16} \: \\   =  > \: sin \: ( \: x \:  -  \: y \: ) \:  =  \dfrac{1}{16}

Answered by Anonymous
0

\huge\boxed{\fcolorbox{violet}{violet}{Answer}}

Attachments:
Similar questions