If siny=x(sin(a+y)) then prove that dy/dx=sin^2(a+y)/sina
Answers
Answered by
3
Answer:
Recall:
sin(A-B) = sin A cos B - cos A sin B ... (1)
Then...
sin y = x sin (a+y) ... (2)
=> cos y dy = x cos(a+y) dy + sin(a+y) dx [ differentiated both sides ]
=> ( cos y - x cos(a+y) ) dy = sin(a+y) dx [ rearranged ]
=> ( sin(a+y) cos y - x sin(a+y) cos(a+y) ) dy = sin²(a+y) dx [ multiplied both sides by sin(a+y) ]
=> ( sin(a+y) cos y - sin y cos(a+y) ) dy = sin²(a+y) dx [ used eqn (2) ]
=> sin( (a+y) - y ) dy = sin²(a+y) dx [ used identity (1) ]
=> sin a dy = sin²(a+y) dx [ simplified ]
=> dy / dx = sin²(a+y) / sin a
Similar questions