Math, asked by amulyarani2005, 7 months ago

if slope of the line through [2, -7] and [x, 5] is 3 then x =

Answers

Answered by MaheswariS
13

\textbf{Given:}

\text{Points are (2,-7) and (x,5)}

\textbf{To find:}

\text{Slope of the line joining the given two points}

\textbf{Solution:}

\text{We know that,}

\text{Slope of the line joining $(x_1,y_1)$ and $(x_2,y_2)$ is}

=\bf\dfrac{y_2-y_1}{x_2-x_1}

\text{Slope of the line joining (2,-7) and (x,5) is 3}

\implies\dfrac{y_2-y_1}{x_2-x_1}=3

\implies\dfrac{5+7}{x-2}=3

\implies\dfrac{12}{x-2}=3

\implies\dfrac{4}{x-2}=1

\implies\,4=x-2

\implies\,4+2=x

\implies\boxd{\bf\,x=6}

\textbf{Answer:}

\textbf{The value of x is 6}

Find more:

M and N are the two points on x axis and y axis repetitively P=(3,2) devide the line segment MN in ratio 2:3 find the coordinate of M and N and slope of line MN

https://brainly.in/question/8655524

Find the slope of the line 2x + 5y - 11 = 0

https://brainly.in/question/14922668#

Answered by Anonymous
10

ANSWER

\large\underline\bold{GIVEN,}

\sf\dashrightarrow A(x_1,y_1)=(2,-7)

\sf\dashrightarrow B(x_2,y_2)=(x,5)

\sf\dashrightarrow x_1=2

\sf\dashrightarrow x_2=x

\sf\dashrightarrow y_1=-7

\sf\dashrightarrow y_2= 5

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow the\:value\:of\:x

FORMULA IN USE,

\large{\boxed{\bf{ \star\:\: slope=  \dfrac{y_2-y_1}{x_2-x_1}\:\: \star}}}

\large\underline\bold{SOLUTION,}

\sf\therefore\text{ putting the values in the  formula and solving it,}

\sf\dashrightarrow \dfrac{5-(-7)}{x-2} = 3

\sf\implies \dfrac{ 5+7}{x-2}= 3

\sf\implies \dfrac{ 12}{x-2}= 3

\sf\implies 12= 3 \times(x-2)

\sf\implies 12= 3x-6

\sf\implies 12+6=3x

\sf\implies  18= 3x

\sf\implies x= \dfrac{ 18}{3}

\sf\implies x=\cancel \dfrac{ 18}{3}

\sf\implies x=6

\large{\boxed{\bf{ \star\:\: x= 6\:\: \star}}}

\large\underline\bold{THE\:VALUE\:OF\:X\:IS\:6.}

______________

Similar questions