English, asked by Anonymous, 6 months ago

if slope of the line through [2, -7] and [x, 5] is 3 then x =​

Answers

Answered by MsInnocent
0

\sf\dashrightarrow \red{B(x_2,y_2)=(x,5)} \\  \\ </p><p></p><p>\sf\dashrightarrow \red{x_1=2} \\  \\ </p><p></p><p>\sf\dashrightarrow \red{x_2=x} \\  \\ </p><p></p><p>\sf\dashrightarrow \red{y_1=-7} \\  \\ </p><p></p><p>\sf\dashrightarrow \red{y_2= 5} \\  \\ </p><p></p><p>\large\underline\bold{\purple{\mathfrak{TO\:FIND,}}} \\  \\ </p><p></p><p>\sf\dashrightarrow \green{the\:value\:of\:x} \\  \\ </p><p></p><p></p><p>\rm{\boxed{\sf{ \circ\:\: slope= \dfrac{y_2-y_1}{x_2-x_1}\:\: \circ}}} \\  \\ </p><p></p><p>\large\underline\pink{\mathfrak{SOLUTION,}} \\  \\ </p><p></p><p>\sf\therefore\text{ \red{putting the values in the formula and solving it,}} \\  \\ </p><p></p><p>\sf\dashrightarrow \blue{\dfrac{5-(-7)}{x-2} = 3} \\  \\ </p><p></p><p>\sf\implies \blue{\dfrac{ 5+7}{x-2}= 3} \\  \\ </p><p></p><p>\sf\implies \blue{ \dfrac{ 12}{x-2}= 3} \\  \\ </p><p></p><p>\sf\implies \blue{ 12= 3 \times(x-2) } \\  \\ </p><p></p><p>\sf\implies \blue{12= 3x-6} \\  \\ </p><p></p><p>\sf\implies \blue{ 12+6=3x} \\  \\ </p><p></p><p>\sf\implies \blue{18= 3x}</p><p></p><p>\sf\implies \blue{x= \dfrac{ 18}{3}} \\  \\ </p><p></p><p>\sf\implies \blue{x=\cancel \dfrac{ 18}{3}} \\  \\ </p><p></p><p>\sf\implies \green{x=6} \\  \\ </p><p></p><p>\rm{\boxed{\sf{ \circ\:\: x= 6\:\: \circ}}} \\  \\ </p><p></p><p>\large\underline\mathtt{\purple{THE\:VALUE\:OF\:X\:IS\:6.}}  \: </p><p></p><p> \:

Answered by ItzCaptonMack
1

\huge\mathtt{\fbox{\red{Answer✍︎}}}

\large\underline\pink{\mathfrak{GIVEN,}}

\sf\dashrightarrow \red{A(x_1,y_1)=(2,-7)}

\sf\dashrightarrow \red{B(x_2,y_2)=(x,5)}

\sf\dashrightarrow \red{x_1=2}

\sf\dashrightarrow \red{x_2=x}

\sf\dashrightarrow \red{y_1=-7}

\sf\dashrightarrow \red{y_2= 5}

\large\underline\bold{\purple{\mathfrak{TO\:FIND,}}}

\sf\dashrightarrow \green{the\:value\:of\:x}

FORMULA ,

\rm{\boxed{\sf{ \circ\:\: slope=  \dfrac{y_2-y_1}{x_2-x_1}\:\: \circ}}}

\large\underline\pink{\mathfrak{SOLUTION,}}

\sf\therefore\text{ \red{putting the values in the  formula and solving it,}}

\sf\dashrightarrow \blue{\dfrac{5-(-7)}{x-2} = 3}

\sf\implies \blue{\dfrac{ 5+7}{x-2}= 3}

\sf\implies \blue{ \dfrac{ 12}{x-2}= 3}

\sf\implies \blue{ 12= 3 \times(x-2) }

\sf\implies \blue{12= 3x-6}

\sf\implies \blue{ 12+6=3x}

\sf\implies  \blue{18= 3x}

\sf\implies \blue{x= \dfrac{ 18}{3}}

\sf\implies \blue{x=\cancel \dfrac{ 18}{3}}

\sf\implies \green{x=6}

\rm{\boxed{\sf{ \circ\:\: x= 6\:\: \circ}}}

\large\underline\mathtt{\purple{THE\:VALUE\:OF\:X\:IS\:6.}}

Similar questions