English, asked by Anonymous, 6 months ago

if slope of the line through [2, -7] and [x, 5] is 3 then x =​

Answers

Answered by ItzCaptonMack
57

\huge\mathtt{\fbox{\red{Answer✍︎}}}

\large\underline\pink{\mathfrak{GIVEN,}}

\sf\dashrightarrow \red{A(x_1,y_1)=(2,-7)}

\sf\dashrightarrow \red{B(x_2,y_2)=(x,5)}

\sf\dashrightarrow \red{x_1=2}

\sf\dashrightarrow \red{x_2=x}

\sf\dashrightarrow \red{y_1=-7}

\sf\dashrightarrow \red{y_2= 5}

\large\underline\bold{\purple{\mathfrak{TO\:FIND,}}}

\sf\dashrightarrow \green{the\:value\:of\:x}

FORMULA ,

\rm{\boxed{\sf{ \circ\:\: slope=  \dfrac{y_2-y_1}{x_2-x_1}\:\: \circ}}}

\large\underline\pink{\mathfrak{SOLUTION,}}

\sf\therefore\text{ \red{putting the values in the  formula and solving it,}}

\sf\dashrightarrow \blue{\dfrac{5-(-7)}{x-2} = 3}

\sf\implies \blue{\dfrac{ 5+7}{x-2}= 3}

\sf\implies \blue{ \dfrac{ 12}{x-2}= 3}

\sf\implies \blue{ 12= 3 \times(x-2) }

\sf\implies \blue{12= 3x-6}

\sf\implies \blue{ 12+6=3x}

\sf\implies  \blue{18= 3x}

\sf\implies \blue{x= \dfrac{ 18}{3}}

\sf\implies \blue{x=\cancel \dfrac{ 18}{3}}

\sf\implies \green{x=6}

\rm{\boxed{\sf{ \circ\:\: x= 6\:\: \circ}}}

\large\underline\mathtt{\purple{THE\:VALUE\:OF\:X\:IS\:6.}}

Answered by anindyaadhikari13
25

Question:-

➡ If the slope of the line through (2, -7) and (x, 5) is 3 then find x.

Solution:-

Given,

 \sf x_{1} = 2

 \sf x_{2} = x

And,

 \sf y_{1} =  - 7

 \sf y_{2} = 5

Now,

 \sf slope =  \frac{ y_{2} -  y_{1}}{ x_{2} -  x_{1} }

 \sf  \implies \frac{ y_{2} -  y_{1}}{ x_{2} -  x_{1} }  = 3

 \sf \implies \frac{5 - ( - 7)}{x - 2}  = 3

 \sf \implies \frac{12}{x - 2}  = 3

 \sf \implies \frac{12}{3}  = x - 2

 \sf \implies 4  = x - 2

 \sf \implies x  = 4 + 2

 \sf \implies x  = 6

Hence, the value of x is 6.

Answer:-

➡ The value of x is 6.

Similar questions