Math, asked by mayank8794, 1 year ago

If Sn=1+3+6+10+...+n(n+1)/2 then Sn is

Answers

Answered by HarishAS
39

Hey friend, Harish here.


Here is your answer.


 \mathrm{S_n = 1+3+6+...\frac{n(n+1)}{2}} \\ \\ \sum\limits_{k=1}^n\Bigl( \frac{k(k+1)}{2} \Bigr) = \frac{1}{2} \sum\limits_{k=1}^n\Bigl( k^2 + k \Bigr ) \\ \\ \\ \implies \frac{1}{2}  \sum\limits_{k=1}^n\Bigl( k^2 \Bigr ) +  \sum\limits_{k=1}^n\Bigl( k \Bigr) \\ \\ \\ \implies \frac{1}{2} \Bigl( \frac{n\left(n+1\right)\left(2n+1\right)}{6}+\frac{n\left(n+1\right)}{2} \Bigr) \\ \\ \\ \implies  \frac{1}{2} \Bigl( \frac{n\left(n+1\right)\left(n+2\right)}{3} \Bigr) \\ \\ \\ \boxed{\bold{\frac{n(n+1)(n+2)}{6}}}

________________________________________________


Hope my answer is helpful to you.

Answered by pinquancaro
6

Answer:

The sum of n term is S_n=\frac{n(n+1)(n+2)}{6}}    

Step-by-step explanation:

Given : S_n=1+3+6+10+.....\frac{n(n+1)}{2}

To find : The value of S_n?

Solution :

S_n=1+3+6+10+.....\frac{n(n+1)}{2}

We have given the nth term of the sequence,

T_n=\frac{n(n+1)}{2}

Sum of n terms is given by,

S_n=\sum\limits_{k=1}^n(T_n)\\

S_n=\sum\limits_{k=1}^n\Bigl( \frac{k(k+1)}{2} \Bigr)

S_n=\sum\limits_{k=1}^n\Bigl(\frac{k^2 + k}{2} \Bigr )

S_n=\sum\limits_{k=1}^n\Bigl( k^2 + k \Bigr )

S_n=\frac{1}{2}\sum\limits_{k=1}^n\Bigl( k^2 \Bigr )+\sum\limits_{k=1}^n\Bigl( k \Bigr)

S_n=\frac{1}{2}\Bigl( \frac{n\left(n+1\right)\left(2n+1\right)}{6}+\frac{n\left(n+1\right)}{2}\Bigr)

S_n=\frac{1}{2}\Bigl( \frac{n\left(n+1\right)\left(n+2\right)}{3} \Bigr)

S_n=\frac{n(n+1)(n+2)}{6}}

Therefore, The sum of n term is S_n=\frac{n(n+1)(n+2)}{6}}

Similar questions