Math, asked by np7800314, 4 months ago

if sn = 12n^2+21n then find an​

Answers

Answered by durgeshgupta02
2

Step-by-step explanation:

Step-by-step explanation:Given :

Step-by-step explanation:Given :S_n = 4n-n^2S

Step-by-step explanation:Given :S_n = 4n-n^2S n

Step-by-step explanation:Given :S_n = 4n-n^2S n

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n =S

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n =S n

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n =S n

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n =S n −S

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n =S n −S n−1

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n =S n −S n−1

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n =S n −S n−1

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n =S n −S n−1 We are given that :

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n =S n −S n−1 We are given that :S_n = 4n-n^2S

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n =S n −S n−1 We are given that :S_n = 4n-n^2S n

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n =S n −S n−1 We are given that :S_n = 4n-n^2S n

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n =S n −S n−1 We are given that :S_n = 4n-n^2S n =4n−n

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n =S n −S n−1 We are given that :S_n = 4n-n^2S n =4n−n 2

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n =S n −S n−1 We are given that :S_n = 4n-n^2S n =4n−n 2

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n =S n −S n−1 We are given that :S_n = 4n-n^2S n =4n−n 2 S_{n-1} = 4(n-1)-(n-1)^2S

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n =S n −S n−1 We are given that :S_n = 4n-n^2S n =4n−n 2 S_{n-1} = 4(n-1)-(n-1)^2S n−1

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n =S n −S n−1 We are given that :S_n = 4n-n^2S n =4n−n 2 S_{n-1} = 4(n-1)-(n-1)^2S n−1

Step-by-step explanation:Given :S_n = 4n-n^2S n =4n−n 2 To Find:a_na n Solution:We know that :a_n=S_n-S_{n-1}a n =S n −S n−1 We are given that :S_n = 4n-n^2S n =4n−n 2 S_{n-1} = 4(n-1)-(n-1)^2S n−1 =4(n−1)

Answered by senthasss12gmailcom
1

Answer:

Answer :

An= 24n+9

Hope it's helpful...

Similar questions