Math, asked by SmrithyRajesh, 9 months ago


If sn=2n² +5n, then its n th term is
(a) 4n-3 (6) 3n-4(c) 4n+3 (d)3n+4​

Answers

Answered by ushasinghparihar9750
0

Answer:

b. 3n-4

because

first term=7

Answered by Anonymous
150

ANSWER✔

\large\underline\bold{GIVEN,}

\sf\dashrightarrow s_n= 2n^2+5n

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow n^{th }\: term\:of\:an\:A.P

✯FORMULA IN USE

\large{\boxed{\bf{ \star\:\:a_n= a+(n-1)d \:\: \star}}}

\large\underline\bold{SOLUTION,}

\red{\text{first n terms of A.P,}}

\sf\therefore TAKING\:n=1

\sf\therefore S_n= 2n^2+5n

\sf\implies S_1= 2(1)^2+5(1)

\sf\implies S_n= 2+5

\sf\therefore S_n=7

\sf\dashrightarrow a_1=7\:-----[first\:term]

\sf\therefore TAKING\:n=2

\sf\dashrightarrow S_n= 2n^2+5n

\sf\implies S_n=2(2)^2+5(2)

\sf\implies S_n= 2(4)+10

\sf\implies S_n= 8+10

\sf\implies S_2=18

FINDING, a_2,

\sf\therefore a_1+a_2=S_2

\sf\implies 7+a_2=18

\sf\implies a_2=18-7

\sf\implies a_2=11

\large{\boxed{\bf{ a_2=11 }}}

NOW, FINDING DIFFERENCE(d),

\sf\therefore d= a_2-a_1

\sf\implies d= 11-7

\sf\implies d= 4

\large{\boxed{\bf{ difference(d)= 4}}}

\purple{\text{A.P= 7,11,15,19......,nth term}}

\sf\therefore a_n= a+(n-1)d

\sf\implies a_n=7 +(n-1)(4)

\sf\implies a_n= 7+ (4n-4)

\sf\implies a_n= 7+4n-4

\sf\implies a_n= 3+4n

\large{\boxed{\bf{ \star\:\:n^{th}\:term\:of\:an\:A.P=3+4n \:\: \star}}}

\large\underline\bold{n^{th}\:TERM\:OF\:AN\:A.P\:is\:3+4n}

__________________

Similar questions