Math, asked by harshsingh2204, 1 year ago

If Sn=3n^2-n
Hence, find the 20 terms.​

Answers

Answered by BrainlyConqueror0901
86

Answer:

\huge{\pink{\boxed{\green{\sf{a20=116}}}}}

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

 \:  \:  \:  \:  \:  \:  {\orange{given}} \\ { \pink{ \boxed{ \green{sn = 3 {n}^{2} - n }}}} \\ \\  {\blue{to \: find}} \\  { \purple{ \boxed{ \red{a20 =  }}}}

According to given question;

We know sum of nth terms of an A.P

So let n=1,2,3,4....

 \to n = 1 \\ \to s1 = 3 \times  {1}^{2}  - 1 \\   { \boxed{\to s1 = 2 }}\\  \\ \to n = 2 \\ \to s2 = 3 \times  {2}^{2}  - 2 \\  \to s2 = 12 - 2 \\ { \boxed{\to s2 = 10 }}\\  \\ \to n = 3 \\  \to s3 = 3 \times  {3}^{2}  - 3 \\ \to s3 = 27 - 3 \\  { \boxed{\to s3 = 24 }}\\  \\ \to s1 = a1 = 2 \\  \to a2 = s2 - s1 \\  \to a2 = 10 - 2 \\ { \boxed{  \to a2 =  8 }}\\  \\ \to a3 = s3 - s2 \\  \to a3 = 24 - 10 \\ { \boxed{\to a3 = 14}} \\  \\ { \boxed{\to commo \: difference = a2 - a1 = 8 - 2 = 6 }} \\

So we get first term and common difference :

From this we can find a20:

 \to a20 = a + 19d \\  \to a20 = 2 + 19 \times 6 \\ \to a20 = 2 + 114 \\  { \pink{ \boxed{ \green{\therefore a20 = 116}}}}

_________________________________________

Similar questions