If Sn=3n2+2n, then find 10th term of A.P
Answers
Answered by
30
Answer:
Step-by-step explanation:
Given that -
- Sₙ = 3n² + 2n
To find :
- 10th term of AP, i.e., t₁₀
Solution :
We know that,
- tₙ = Sₙ - Sₙ₋₁
To find 10th term, we need to find S₁₀ and S₉.
Finding S₁₀ :
⇒ Sₙ= 3n² + 2n
⇒ S₁₀ = 3 (10)² + 2 (10)
⇒ S₁₀ = 3 (100) + 20
⇒ S₁₀ = 300 + 20
⇒ S₁₀ = 320
Finding S₉ :
⇒ Sₙ= 3n² + 2n
⇒ S₉ = 3 (9)² + 2 (9)
⇒ S₉ = 3 (81) + 18
⇒ S₉ = 243 + 18
⇒ S₉ = 261
Finding t₁₀ :
⇒ tₙ = Sₙ - Sₙ₋₁
⇒ t₁₀ = S₁₀ - S₉
⇒ t₁₀ = 320 - 261
⇒ t₁₀ = 59
Hence, the 10th term of AP is 59.
Similar questions