Math, asked by ibrahim7789, 1 year ago

If Sn denotes the sum of first n terms of an A.P., prove that S12=3(S8-S4).​

Answers

Answered by Alcaa
13

Answer:

Prove of  S_1_2 = 3(S_8 - S_4)  is shown below.

Step-by-step explanation:

We know that Sum of n terms of an A.P. , S_n = \frac{n}{2}[2a + (n-1)d] , where a = first term of AP and d = common difference.

To Prove: S_1_2 = 3(S_8 - S_4)

L.H.S =  S_1_2  =  \frac{12}{2}[2a + (12-1)d]

             S_1_2  = 6[2a + 11d]

             S_1_2  =  12a + 66d

R.H.S =  3(S_8 - S_4) = 3(\frac{8}{2}[2a + (8-1)d] - \frac{4}{2}[2a + (4-1)d])

                              = 3(4[2a + 7d] - 2[2a + 3d])

                              = 3(8a + 28d] - 4a - 6d])

                              = 3( 4a + 22d) = 12a+66d

Therefore, L.H.S = R.H.S hence proved that  S_1_2 = 3(S_8 - S_4) .

Answered by jhumursarkar68
9

Answer:

Here is ur attached answer

mark as brainliest

Attachments:
Similar questions