If Sn denotes the sum of first n terms of an AP, prove that S12=3(S8-S4)
Answers
Answered by
8
let x be the first term and a be ap coefficient
⇒x,x+a,x+2a,x+3a,.....,x+(n-1)a
Sum of terms of a AP=n(1st term+last term)/2
so
S12=12(x+x+(12-1)a)/2
=6(2x+11a)
S8= 8(x+x+(8-1)a)/2
= 4(2x+7a)
S4=4(x+x+(4-1)a)/2
=2(2x+3a)
S8-S4= 4(2x+7a)-2(2x+3a)
= 8x+28a-4x-6a
= 4x+22a
3(S8-S4)=3(4x+22a)
=3(2(2x+11a))
=6(2x+11a)=S8
⇒3(S8-S4)=S8
⇒x,x+a,x+2a,x+3a,.....,x+(n-1)a
Sum of terms of a AP=n(1st term+last term)/2
so
S12=12(x+x+(12-1)a)/2
=6(2x+11a)
S8= 8(x+x+(8-1)a)/2
= 4(2x+7a)
S4=4(x+x+(4-1)a)/2
=2(2x+3a)
S8-S4= 4(2x+7a)-2(2x+3a)
= 8x+28a-4x-6a
= 4x+22a
3(S8-S4)=3(4x+22a)
=3(2(2x+11a))
=6(2x+11a)=S8
⇒3(S8-S4)=S8
Answered by
1
Solution :
Let the first term be a and common difference be d.
We have to prove
In RHS, we have :
Now,
In LHS, we have :
Now,
As, LHS = RHS,
Hence, Proved.
Similar questions