Math, asked by benlightning4589, 9 months ago

If Sn denotes the sum of first n terms of an ap, prove that S12 =(S8-S4)

Answers

Answered by BrainlyPopularman
8

TO PROVE :

  \\ \implies \bf S_{12} = 3(S_{8} - S_{4})  \\

SOLUTION :

• We know that Sum of n terms of A.P. –

  \\ \implies { \boxed{ \bf S_{n} = \dfrac{n}{2}   \left[2a + (n - 1)d \right]}} \\

• Let's take L.H.S. –

  \\ \implies  \bf S_{12} = \dfrac{12}{2}   \left[2a + (12 - 1)d \right] \\

  \\ \implies  \bf S_{12} = 6 (2a + 11d ) \\

  \\ \implies  \bf S_{12} = 12a + 66d \:  \:  \:  \:  -  -  - eq.(1) \\

• Let's take R.H.S. –

  \\ \implies  \bf 3(S_{8} -S_{4})  = 3 \left( \dfrac{8}{2} \left[2a + (8- 1)d \right] - \dfrac{4}{2} \left[2a + (4 - 1)d \right] \right)\\

  \\ \implies  \bf 3(S_{8} -S_{4} )=3 \left( 4 \left[2a + (8- 1)d \right] - 2 \left[2a + (4 - 1)d \right] \right)\\

  \\ \implies  \bf 3(S_{8} -S_{4}) = 12(2a + 7d )- 6 (2a + 3d) \\

  \\ \implies  \bf 3(S_{8} -S_{4}) =24a + 84d - 12a - 18d \\

  \\ \implies  \bf 3(S_{8} -S_{4}) =12a + 66d  \:  \:  \:  \:  -  -  - eq.(2)\\

▪︎ By eq.(1) & eq.(2) –

  \\ \implies  \bf L.H.S. =R.H.S.\\

  \\ \dashrightarrow  { \underline{ \: \bf Hence \:  \: proved }}\\

Answered by Anonymous
5

Answer:-

 \bf \ \: S_n  \:  is \: sum \: of \: first \: n \: terms \: of \: an \:   A.P .

 \bf \ \: let \: a \: be \:  \: the \: term \: and \: d \: be \: the \: common \: difference \: of \: the \: given \:  A.P

Then,

 \sf \ \: S_n =  \frac{n}{2} [2a + (n - 1)d]

 \sf \ \: S_1_2= \frac{12}{2} [  2a + (12 - 1)d]

S_1_2=6[2a + 11d  ]

S_1_2=12a + 66d \: ........(1)

Now,

S_8 =  \frac{8}{2} [2a + (8 - 1)d] \\ S_8 = 4[2a + 7d] \\ S_8 = 8a + 28d...........(2)

and,

S_4 =  \frac{8}{2} [2a + (4 - 1)d] \\ S_4 = 2[2a + 3d] \\ S_4 = 4a + 6d \: .........(3)

 \bf \therefore \: 3(S_8 - S_4) = 3(8a + 28d - 4a - 6d) \\    =  \bf3(4a + 22d) \\  \bf = 12a + 66d

 \bf3(S_8 - S_4) = S_1_2

 \bf \: Hence \: Proved \: .

Similar questions