Math, asked by himanshumaurya7355, 1 year ago

If Sn denotes the sum of first n terms of an AP,Prove that S30=(S20-S10).

Answers

Answered by alokpal47788
23

Given sn denotes the sum of first n terms of an AP.


Let a be the first term and d be the common difference of the given AP.


Then sn = n/2(2a + (n-1)d).


 

LHS :


S30 = (30/2)(2a + (30 - 1)d)


       = 15(2a + 29d)


       = 30a + 435d.   ----------------  (1).



RHS:


(S20 - S10)  = (20/2)(2a + (20 - 1) * d) - (10/2)(2a + (10 - 1) * d)


                    = 10(2a + 19d) - 5(2a + 9d)


                    = 20a + 190d - 10a - 45d


                    = 10a + 145d      



3(S20 - S10) = 3(10a + 145d)


                    = 30a + 435d   ------------- (2)



Therefore From (1) and (2),  It is proved that S30 = 3(S20 - S10).


LHS = RHS.


Hope this helps!




geeshankhan: but ques is not ask that thing which you have shown
alokpal47788: sorry
alokpal47788: mistake for reading
Similar questions