Math, asked by sodan, 1 year ago

If Sn denotes the sum of the first n terms of an A.P., prove that S30 = 3 (S20 − S10).

Answers

Answered by siddhartharao77
832
Given sn denotes the sum of first n terms of an AP.

Let a be the first term and d be the common difference of the given AP.

Then sn = n/2(2a + (n-1)d).

 
LHS :

S30 = (30/2)(2a + (30 - 1)d)

       = 15(2a + 29d)

       = 30a + 435d.   ----------------  (1).


RHS:

(S20 - S10)  = (20/2)(2a + (20 - 1) * d) - (10/2)(2a + (10 - 1) * d)

                    = 10(2a + 19d) - 5(2a + 9d)

                    = 20a + 190d - 10a - 45d

                    = 10a + 145d      


3(S20 - S10) = 3(10a + 145d)

                    = 30a + 435d   ------------- (2)


Therefore From (1) and (2),  It is proved that S30 = 3(S20 - S10).

LHS = RHS.

Hope this helps!
Answered by VishalSharma01
98

Answer:

Step-by-step explanation:

Solution :-

Let a be the first term and d be the common difference of the given A.P.

Sum of the first n terms of an A.P,

Sn = n/2 [2a + ( n - 1)d]

Then, S(30) = 30/2[2a + (30 - 1)d] ....... (i) L.H.S

⇒ S[(20) - S(10)] = 20/2[2a + (20 - 1)d] - 10/2[2a + (10 - 1)d]

⇒ S[(20) - S(10)] = 10[2a + (20 - 1)d] - 5[2a + (10 - 1)d]

⇒ S[(20) - S(10)] = 10a + 190d  -  45d .

⇒ S[(20) - S(10)] = 3(10a + 145d)

⇒ S[(20) - S(10)] = 3 × 5(2a + 29d )

S[(20) - S(10)] = 30/2[2a + (30 - 1)d] ........ (ii) R.H.S

From (i) and (ii), we get

S(30) = 3[S(20) - S(10)]

Hence Proved.

Related or Similar Questions :-

https://brainly.in/question/8427165

https://brainly.in/question/16920824

https://brainly.in/question/3902536

https://brainly.in/question/5041427

https://brainly.in/question/1594261

Similar questions