Math, asked by Raghavcricketer, 1 year ago

if Sn is the sum of first n term of an ap than prove S12=3(S8-S4)

Answers

Answered by jk1472003
2
tried to solve your question..
hope it helps...!
Attachments:
Answered by Anonymous
0

Solution :

Let the first term be a and common difference be d.

We have to prove  \sf S_{12} = 3(S_{8} - S_{4})

In RHS, we have :  \sf 3(S_{8} - S_{4})

Now,

 \underline{\boxed{\sf S_{n} = \dfrac{n}{2} . [2a+(n-1)d]}}

 \sf : \implies 3 \Bigg[\dfrac{8}{2}(2a+(8-1)d) - \dfrac{4}{2}(2a+(4-1)d)\Bigg]

 \sf : \implies 3 \Bigg[\cancel{\dfrac{8}{2}}(2a+7d) - \cancel{\dfrac{4}{2}}(2a+3d)\Bigg]

 \sf : \implies 3 [4(2a+7d) - 2(2a+3d)]

 \sf : \implies 3 \times 2[2(2a+7d) - (2a+3d)]

 \sf : \implies 6(4a+14d - 2a+3d)

 \sf : \implies 6(2a+11d)

In LHS, we have :  \sf S_{12}

Now,

 \underline{\boxed{\sf S_{n} = \dfrac{n}{2} . [2a+(n-1)d]}}

 \sf : \implies \dfrac{12}{2} (2a + (12-1)d)

 \sf : \implies \cancel{\dfrac{12}{2}} (2a + 11d)

 \sf : \implies 6 (2a + 11d)

As, LHS = RHS,

Hence, Proved.

Similar questions