If Sn=n(4n+1) find Ap
Answers
Answered by
4
➡An=Sn-Sn-1
➡An=n(4n+1)-[(n-1){4(n-1)+1}]
➡An=4n^2+n-[(n-1){4n-4+1}]
➡An=4n^2+n-[(n-1){4n-3}]
➡An=4n^2+n-[4n^2-3n-4n+3]
➡An=4n^2+n-4n^2+7n-3
➡An=8n-3
➡A1=8-3=5
➡A2=8×2-3=13
➡A3=8×3-3=21
Ap➡5,13,21...........with common difference 8
➡An=n(4n+1)-[(n-1){4(n-1)+1}]
➡An=4n^2+n-[(n-1){4n-4+1}]
➡An=4n^2+n-[(n-1){4n-3}]
➡An=4n^2+n-[4n^2-3n-4n+3]
➡An=4n^2+n-4n^2+7n-3
➡An=8n-3
➡A1=8-3=5
➡A2=8×2-3=13
➡A3=8×3-3=21
Ap➡5,13,21...........with common difference 8
Answered by
5
sn=n (4n+1)
put n=1
s1=1(4x1+1)
=4+1
=5
a=5
put n=2
s2= 2(4x2+1)
=2x9
=18
a1+a2=18
5+a2=18
a2=13
d=a1-a2
=13-5
=8
a3=a+(n-1)d
=5+3-1x8
=5+16
=21
so AP is 5,13,21.....
put n=1
s1=1(4x1+1)
=4+1
=5
a=5
put n=2
s2= 2(4x2+1)
=2x9
=18
a1+a2=18
5+a2=18
a2=13
d=a1-a2
=13-5
=8
a3=a+(n-1)d
=5+3-1x8
=5+16
=21
so AP is 5,13,21.....
Similar questions