Math, asked by bantai2596, 6 months ago

If sn=n²+3n ,then find a20 and s20​

Answers

Answered by singhkri17
2

Answer:

n=37²

Step-by-step explanation:

If sn= n²+3n then find a20 and 20

3n²=20+20

3n²=40

n=3_40

n=37²

Answered by rajivdani20p3mkqi
1

Answer:

a20=42 and s20 = 460

Step-by-step explanation:

sn =  {n}^{2}  + 3n \\ s1 =  {1}^{2} + 3 \times 1 = 4 \\ s2 =  {2}^{2}   + 3 \times 2 = 10 \\ a2 = s2 - s1  \\  = 10 - 4 = 6 \\  \\ d = a2 - a1 \\  = 6 - 4 = 2(s1 = a1) \\  \\ a20 = a + (n - 1)d \\ 4 + (20 - 1)2 \\ 4 + 19 \times 2 \\ 42 \\  \\ s20 =   {n}^{2}  + 3n \\  {20}^{2}  + 3  \times 20 \\ 460

Hope it helps.......

Mark it brainliest.......

Thank you......

Similar questions