Math, asked by apal24488, 1 year ago

if SN of AP is (4n-n square) , find AP​

Answers

Answered by ItSdHrUvSiNgH
10

Step-by-step explanation:

\huge\blue{\underline{\underline{\bf Question:-}}}

sn \: of \: AP \: is \:  \implies \\  \\ (4n -  {n}^{2} ) \\  \\ find \:  \: the \:  \: AP

\huge\blue{\underline{\underline{\bf Answer:-}}}

(4n -  {n}^{2} ) \\  \\ first \:  \: term = a = t1 = (4(1) - 1) = 3 \\  \\ sum \: of \: second \:  \: term = (8 - 4) = 4 \\  \\ t2 = Sum \: \: of \: \: second \: \: term - first \: \: term \\ = 4 - 3 = 1 \\ \\ third \: \: term = (4n - {n}^{2}) = (12 - 9) = 3 \\ \\ t3 = 4-3 = -1 \\ t4 = (4n -{n}^{2}) = 16 - 16 = 0

A.P\:  \: will \:  \: be \implies \\  \\ 3,4,3,0....

Answered by Anonymous
2

Given ,

The sum of n terms of AP is 4n - n²

 \star \:  \:  \sf S_{1} \:  \: or \:  \: First \:  term   = 4(1) -  {(1)}^{2}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 4 - 1\\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =3 \\  \\  \star \:  \:  \sf S_{2} = 4(2) -  {(2)}^{2} \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \:   = 8 - 4\\   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  = 4

We know that ,

 \large { \red{ \sf \fbox{ \fbox{ \pink{Second  \: term =  \sf S_{2} -  \sf S_{1}}}}}}

Substitute the values , we obtain

 \sf \hookrightarrow  Second  \: term = 4 - 3 \\  \\ \sf \hookrightarrow Second  \: term =1

So , the common difference is (1 - 3) i.e - 2

Therefore , The required AP is 3 , 1 , - 1 , - 3 , ......

Similar questions