If Sn, S2n, S3n are the sum of n, 2n , 3n terms of a GP respectively, then verify that:
Sn(S3n-S2n) =(S2n-Sn) ²
Answers
Answer:
The answer is S1 (S3-S2)=-(S2-S1)²
Step-by-step explanation:
S1 ,S2 and S3 are respectively the sum of n ,2n and 3n terms of a G.P
Let's say first term = a
And common Ratio = r
S1 = a(rⁿ - 1)/(r-1)
S2 = a(r²ⁿ - 1)/(r-1)
S3 = a(r³ⁿ - 1)/(r-1)
LHS = S1(S3 - S2)
= {a(rⁿ - 1)/(r-1)} (a(r³ⁿ - 1)/(r-1) - a(r²ⁿ - 1)/(r-1))
= {a²(rⁿ - 1)/(r-1)²} (r³ⁿ - 1 -r²ⁿ + 1)
= {a²(rⁿ - 1)/(r-1)²}r²ⁿ(rⁿ - 1)
= a²(rⁿ - 1)²r²ⁿ/ (r-1)²
= ( arⁿ(rⁿ - 1)/(r-1) )²
RHS = (S2-S1)²
= (a(r²ⁿ - 1)/(r-1) - a(rⁿ - 1)/(r-1))²
= (a/(r-1))²(r²ⁿ - 1 - rⁿ + 1)²
= (a/(r-1))²(r²ⁿ - rⁿ)²
= (arⁿ/(r-1))²(rⁿ - 1)²
= (arⁿ(rⁿ - 1)/(r-1))²
LHS = RHS
Answer:
Sn (S3n-S2n)=-(S2n-Sn)²
Step-by-step explanation:
Sn ,S2n and S3n are respectively the sum of n ,2n and 3n terms of a G.P
Let say first term = a & common Ratio = r
Sn = a(rⁿ - 1)/(r-1)
S2n = a(r²ⁿ - 1)/(r-1)
S3n = a(r³ⁿ - 1)/(r-1)
LHS = Sn(S3n - S2n)
= {a(rⁿ - 1)/(r-1)} (a(r³ⁿ - 1)/(r-1) - a(r²ⁿ - 1)/(r-1))
= {a²(rⁿ - 1)/(r-1)²} (r³ⁿ - 1 -r²ⁿ + 1)
= {a²(rⁿ - 1)/(r-1)²}r²ⁿ(rⁿ - 1)
= a²(rⁿ - 1)²r²ⁿ/ (r-1)²
= ( arⁿ(rⁿ - 1)/(r-1) )²
RHS = (S2n-Sn)²
= (a(r²ⁿ - 1)/(r-1) - a(rⁿ - 1)/(r-1))²
= (a/(r-1))²(r²ⁿ - 1 - rⁿ + 1)²
= (a/(r-1))²(r²ⁿ - rⁿ)²
= (arⁿ/(r-1))²(rⁿ - 1)²
= (arⁿ(rⁿ - 1)/(r-1))²
LHS = RHS