Math, asked by mohdovesh2684, 8 months ago

) If Solve the following pair of linear equation
99x + 101y = 499xy
101x + 99y = 501xy

Answers

Answered by sonisiddharth751
6

given equation :-

 \tt \: 99x + 101y = 499xy.......eq.(1) \\  \tt101x + 99y = 501xy.......eq.(2) \\

Solution :-

add eq.(1) and (2) we get ----

 \tt \: 99x + 101y = 499xy \\  \tt101x + 99y = 501xy \\  \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \tt \: 200x + 200y = 1000xy \\ \\   \sf \: divided \: of \: 200xy \: in \: both \: side  \: we \: get\: \\  \\  \bf \: x + y =5xy\: ............eq.(3) \\  \\

Now,

Subtract eq. (1) from eq.(2) ---

 \tt \: 101x + 99y = 501xy \\ \tt \: 99x + 101y = 499 xy\\  \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\   \tt  \: 2x - 2y = 2xy \\  \sf \: divided \: by \: 2 \: in \: both \: side \: we \: get \:  \\  \bf \: x - y = 1 \: .............eq.(4) \\ \\ \sf \: sign \: will \: be \: change \: as \: 99x \:will \:  \\  \sf convert \:  \sf \:  into \: ( - 99x) \: and \: 101y \:  \\  \sf \: will \: convert \: into \: ( - 101y)

NOW,

add eq.(3) and eq.(4) we get --

 \tt \: x  +  y = 5xy \\ \tt \: x - y = 1xy \\  \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \tt \: 2x = 6xy \\  \therefore \tt \:  \:  y =  \dfrac{2x}{6x}  =  \bf \: \dfrac{1}{3}\\  \\  \bf \: put \: value \: of \: y = \dfrac{1}{3}\: in \: eq.(4) \: we \: get \:  \\  \\ \tt x -  \dfrac{1}{3}=  x \times\dfrac{1}{3}\\ \\    \tt \:  \: \dfrac{3x-3}{3}= \dfrac{x}{3}\\ \\  \tt \:9x-3= 3x \\ \\ \tt \:9x-3x = 3\\  \\ \tt \: 6x=3 \\ \\ \tt \:  {x = \dfrac{3}{6}}\\ \\ \bf \: {x = \dfrac{1}{2}}

therefore the value of x = \tt\: \dfrac{1}{2} and y = \tt\:  \dfrac{1}{3}

Answered by gknithinvinayak
0

Answer:

The Values are x=1\2 and y=1/3

Step-by-step explanation:

99x+101y=499xy---------------------1

101x+99y=501xy---------------------2

Add 1 and 2

1= 99x+101y=499xy

2=101x+99y=501xy

___________________

200x+200y=1000xy

Divide by 200

x+y=5----------------------3

Sub 1 and 2

2=101x+99y=501xy

1= 99x+101y=499xy(-)

_____________________

2x-2y=2xy

Divide by 2

x-y=1xy-----------4

after do it yourself after do it yourselffffff

Similar questions