if sqrt 5-sqrt 3 / sqrt 5+ sqrt 3= 2x- sqrt 15 find the value of x
Answers
Answer:
x=2
Step-by-step explanation:
Step-by-step explanation:
Given:-
(√5-√3)/(√5+√3)=2x-√15
To find:-
Find the value of x?
Solution:-
Given that
(√5-√3)/(√5+√3)=2x-√15
Take LHS:-
(√5-√3)/(√5+√3)
The denominator =√5+√3
We know that
The Rationalising factor of √a+√b = √a-√b
The Rationalising factor of√5+√3 = √5-√3
On Rationalising the denominator then
=> [(√5-√3)/(√5+√3)]×[(√5-√3)/(√5-√3)]
=> [(√5-√3)(√5-√3)]/[(√5+√3)(√5-√3)]
=>[(√5-√3)^2]/[(√5+√3)(√5-√3)]
As we know
(a+b)(a-b)=a^2-b^2
Where a = √5 and b=√3
=>[(√5-√3)^2]/[(√5)^2-(√3)^2]
=>[(√5-√3)^2]/(5-3)
=>(√5-√3)^2=2
We know that
(a-b)^2=a^2-2ab+b^2
=>[(√5)^2-2(√5)(√3)+(√3)^2]/2
=>(5-2√15+3)/2
=>[(5+3)-2√15]/2
=>(8-2√15)/2
=>2(4-√15)/2
=>4-√15
Now,
given that
(√5-√3)/(√5+√3)=2x-√15
=>4-√15 = 2x-√15
=>(2×2)-√15 = 2x-√15
On Comparing both sides then
x=2
Answer:-
The value of x for the given problem is 2
Used formulae:-
- The Rationalising factor of √a+√b = √a-√b
- (a-b)^2=a^2-2ab+b^2
- (a+b)(a-b)=a^2-b^2