Math, asked by rishimenon206, 9 months ago

If square root 3 x square - 4 x + 34 + square root 3 x square - 4 x minus 11 is equal to 9 then value of square root 3 x square - 4 x + 34 - square root 3 x square - 4 x minus 11 is

Answers

Answered by ashishks1912
5

GIVEN :

If \sqrt{3x^2 - 4 x + 34} +\sqrt{3 x ^2 - 4 x-11}=9 then the value of \sqrt{3 x^2 - 4 x + 34} - \sqrt{3 x^2 - 4 x-11} is

TO FIND :

The value of \sqrt{3 x^2 - 4 x + 34} - \sqrt{3 x^2 - 4 x-11}

SOLUTION :

Given that the expression is \sqrt{3x^2 - 4 x + 34} +\sqrt{3 x ^2 - 4 x-11}=9

\sqrt{3x^2 - 4 x + 34} +\sqrt{3 x ^2 - 4 x-11}=9\hfill (1)

Let a =\sqrt{3x^2 -4x + 34} and b =\sqrt{3x^2 - 4x -11}

Now, (1) becomes,

⇒ a+b = 9

From the algebraic identity :

(a+b)(a-b)=a^2-b^2  we have that,

a-b=\frac{a^2-b^2}{a+b}

Now substitute the values for a and b we get, a^2-b^2=(\sqrt{3x^2 -4x + 34})^2-(\sqrt{3x^2 - 4x -11})^2

=3x^2-4x+34-(3x^2-4x-11)

=3x^2-4x+34-3x^2+4x+11

= 45

⇒   a^2-b^2=45

Substitute the value a^2-b^2=45 in a-b=\frac{a^2-b^2}{a+b} we get

a-b=\frac{45}{9}

a-b=5

ie., \sqrt{3 x^2 - 4 x + 34} - \sqrt{3 x^2 - 4 x-11}=5

∴ the value of \sqrt{3 x^2 - 4 x + 34} - \sqrt{3 x^2 - 4 x-11} is 5

Similar questions