If square root of 1369+square root 0.0615+x = 37.25 and x=1/10^y , then the value of y is
Answers
Answer:
Step-by-step explanation:
0.0615+x
=0.0615x
37.25/1x10=y
Y=372.5
If square root of 1369+square root 0.0615+x = 37.25 and x=1/10^y, then the value of y is 3.
Step-by-step explanation:
Given data: √[1369] + √[0.0615 + x] = 37.25 and x = 1/10^y
To find: the value of y
Solution:
√[1369] + √[0.0615 + x] = 37.25
⇒ 37 + √[0.0615 + x] = 37.25
⇒ √[0.0615 + x] = 37.25 – 37
⇒ √[0.0615 + x] = 0.25
squaring on both sides
⇒ 0.0615 + x = 0.0625
⇒ x = 0.0625 – 0.0615
⇒ x = 1 * 10⁻³
Since we are given
x = 1/10^y
∴ 1 * 10⁻³ = 1/10^y
⇒ 10⁻³ = 10^-y
⇒ y = 3
Thus, the value of y is 3.
-----------------------------------------------------------------------------------------
Also View:
Find the cube root of 27*512.
https://brainly.in/question/7324371
Find x if square root of0 1369+square root of (0.0615+x) =37.25
https://brainly.in/question/180296
Simplify 4 cube root 81 - 8 3 Cube root 343 +15 5 cube root 32+root 225
https://brainly.in/question/4239628