Math, asked by koushikbala1998, 7 months ago

If square root of 17 +12 root 2/ sq root of 11 + root 72 = a+b root 2, then what is the value of (a+3b)?
a 2 b 1 2/7 c 1 d 1 3/7

Answers

Answered by himajahimaja410
84

Answer:

2

Step-by-step explanation:

Attachments:
Answered by isha00333
2

Given:\[\frac{{\sqrt {17 + 12\sqrt 2 } }}{{\sqrt {11 + \sqrt {72} } }} = a + b\sqrt 2 \]

To find: the value of \[\left( {a + 3b} \right)\].

Solution:

Take the numerator of the LHS and simplify it.

\[\sqrt {17 + 12\sqrt 2 }  = \sqrt {9 + 8 + 2 \times 3 \times 2\sqrt 2 } \]

                    \[ = \sqrt {{3^2} + {{\left( {2\sqrt 2 } \right)}^2} + 2 \times 3 \times 2\sqrt 2 } \]

\[[\]∵ the above expression is of the form \[{\left( {a + b} \right)^2}]\]

                    \[\begin{array}{l} = \sqrt {{{\left( {3 + 2\sqrt 2 } \right)}^2}} \\ = 3 + 2\sqrt 2 \end{array}\]

Take denominator of the RHS and simplify it.

\[\sqrt {11 + \sqrt {72} }  = \sqrt {11 + \sqrt {36 \times 2} } \]

                  \[\begin{array}{l} = \sqrt {11 + 6\sqrt 2 } \\ = \sqrt {9 + 2 + 3 \times 2\sqrt 2 } \\ = \sqrt {{3^2} + {{\left( {\sqrt 2 } \right)}^2} + 2 \times 3 \times \sqrt 2 } \end{array}\]

\[[\]∵ the above expression is of the form \[{\left( {a + b} \right)^2}]\]

                 \[\begin{array}{l} = \sqrt {{{\left( {3 + \sqrt 2 } \right)}^2}} \\ = 3 + \sqrt 2 \end{array}\]

Observe that,

\[\frac{{3 + 2\sqrt 2 }}{{3 + \sqrt 2 }} = \frac{{3 + \sqrt 2  + \sqrt 2 }}{{3 + \sqrt 2 }}\]

          \[ = \frac{{3 + \sqrt 2 }}{{3 + \sqrt 2 }} + \frac{{\sqrt 2 }}{{3 + \sqrt 2 }}\]

          \[ = 1 + \frac{{\sqrt 2 }}{{3 + \sqrt 2 }} \times \frac{{3 - \sqrt 2 }}{{3 - \sqrt 2 }}\]

          \[ = \frac{{\left( {9 - 2} \right) + \sqrt 2 \left( {3 - \sqrt 2 } \right)}}{{\left( {9 - 2} \right)}}\]

          \[ = \frac{{7 + 3\sqrt 2  - 2}}{7}\]

          \[ = \frac{{5 + 3\sqrt 2 }}{7}\]

          \[ = \frac{5}{7} + \frac{3}{7}\sqrt 2 \]

Compare \[  \frac{5}{7} + \frac{3}{7}\sqrt 2 \] with \[a + b\sqrt 2 \].

Understand that, \[a = \frac{5}{7},b = \frac{3}{7}\]

Find the value of \[\left( {a + 3b} \right)\].

\[\begin{array}{l}\left( {a + 3b} \right) = \frac{5}{7} + 3\left( {\frac{3}{7}} \right)\\ \Rightarrow \left( {a + 3b} \right) = \frac{5}{7} + \frac{9}{7}\\ \Rightarrow \left( {a + 3b} \right) = \frac{{5 + 9}}{7}\end{array}\]

\[\begin{array}{l} \Rightarrow \left( {a + 3b} \right) = \frac{{14}}{7}\\ \Rightarrow \left( {a + 3b} \right) = 2\end{array}\]

Hence, the value of \[\left( {a + 3b} \right)\] is 2.

       

Similar questions