Math, asked by OmkarSarwade, 17 days ago

If squared difference of the zeros of the quadratic polynomial x²+px+45 is equal to 144 , find the value of p. *

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:Let \:  \alpha , \beta  \: be \: the \: zeroes \: of \:f(x) =   {x}^{2} + px + 45

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha +   \beta  =  -  \: \dfrac{p}{1}  =  -  \: p

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha  \beta   \: =  \: \dfrac{45}{1} = 45

Now,

According to statement,

\rm :\longmapsto\: {( \alpha  -  \beta )}^{2}  = 144

\rm :\longmapsto\: {( \alpha + \beta )}^{2}  - 4 \alpha  \beta  = 144

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{ \boxed{ \because \bf \:  {(x  -  y)}^{2}  =  {(x + y)}^{2} - 4xy}}

\rm :\longmapsto\: {( - p)}^{2} - 4 \times 45 = 144

\rm :\longmapsto\: { p}^{2} - 180 = 144

\rm :\longmapsto\: { p}^{2}  = 144 + 180

\rm :\longmapsto\: { p}^{2}  = 324

\bf\implies \:p \:  =  \:  \pm \: 18

Additional Information :-

\rm :\longmapsto\: { \alpha }^{2} +  { \beta }^{2} =  {( \alpha  +  \beta) }^{2}  - 2 \alpha  \beta

\rm :\longmapsto\: { \alpha }^{3} +  { \beta }^{3} =  {( \alpha  +  \beta) }^{3}  - 3\alpha  \beta ( \alpha  +  \beta )

\rm :\longmapsto\: {( \alpha  -  \beta )}^{2}  =  {( \alpha  +  \beta )}^{2}  - 4 \alpha  \beta

Cubic polynomial

\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \:  {ax}^{3} +  {bx}^{2} + cx + d, \: then

\green{ \boxed{ \bf \:  \alpha  +  \beta  +  \gamma  =  -  \: \dfrac{b}{a}}}

\green{ \boxed{ \bf \:  \alpha  \beta  +  \beta \gamma   +  \gamma \alpha   =  \: \dfrac{c}{a}}}

\green{ \boxed{ \bf \:  \alpha \beta  \gamma  =  -  \: \dfrac{d}{a}}}

Similar questions