Math, asked by vishnusoyam71, 4 months ago

If sum of 3rd and 8th terms of an A.P. is 7 and sum of 7th and 14th terms is -3 then
Find the 10th term.​

Answers

Answered by amansharma264
65

EXPLANATION.

Sum of 3rd and 8th terms of an A.P. = 7.

Sum of 7th and 14th terms of an A.P. = -3.

As we know that,

General term of an A.P.

⇒ Tₙ = a + (n - 1)d.

Using this formula in equation, we get.

⇒ T₃ + T₈ = 7. - - - - - (1).

⇒ a + 2d + a + 7d = 7.

⇒ 2a + 9d = 7. - - - - - (1).

⇒ T₇ + T₁₄ = -3. - - - - - (2).

⇒ a + 6d + a + 13d = -3.

2a + 19d = -3. - - - - - (2).

From equation (1) & (2), we get.

⇒ -10d = 10.

⇒ d = -1.

Put the value of d = -1 in equation (1), we get.

⇒ 2a + 9(-1) = 7.

⇒ 2a - 9 = 7.

⇒ 2a = 7 + 9.

⇒ 2a = 16.

⇒ a = 8.

To find : 10th term of an A.P.

⇒ T₁₀. = a + (10 - 1)d.

⇒ T₁₀ = a + 9d.

Put the value in the equation, we get.

⇒ T₁₀ = 8 + 9(-1).

⇒ T₁₀ = 8 - 9.

⇒ T₁₀ = -1.

                                                                                                                       

MORE INFORMATION.

Supposition of an A.P.

(1) = Three terms as : a - d, a, a + d.

(2) = Four terms as : a - 3d, a - d, a + d, a + 3d.

(3) = Five terms as : a - 2d, a - d, a, a + d, a + 2d.

Answered by Anonymous
111

\huge\bf\underline\mathfrak{Answer :}

  • \text{10th term} = \sf\red{-1}

\huge\bf\underline\mathfrak{Step \: by \: step \: explanation :}

\huge\bf\underline\mathfrak{Given :}

  • \text{3rd term + 8th term of the A.P. = 7}
  • \text{7th term + 14th term = -3}

\huge\bf\underline\mathfrak{To \: find :}

  • \text{10th term of the A.P.}

\huge\bf\underline\mathfrak{Solution :}

\sf\underbrace{General \: term \: of \: an \: A.P. \: :-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\sf a_n=a  \:  + \: ( \: n - 1 \: )d

Where,

  • a = \text{First term}
  • d = \text{Common difference}

\underline\text{From the above formula, we can say :-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\text{3rd term} = \sf\purple{a+2d}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\text{8th term} = \sf\purple{a+7d}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\text{7th term} = \sf\purple{a+6d}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\text{14th term} = \sf\purple{a+13d}

\sf\underbrace{According \: to \: question \: :-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\color{green}\star\:\tt{Case \: 1 \: :-}

\sf{a_3+a_8 = 7}

\implies \sf{a + 2d + a + 7d = 8 }

\implies \sf{2a + 9d = 8} --- \text{Equation (i)}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\color{green}\star\:\tt{Case \: 2 \: :-}

\sf{7th \: term + 14th \: term} = -3

\implies \sf{a + 6d + a + 13d = -3 }

\implies \sf{2a + 19d = -3} --- \text{Equation (ii)}

\sf\underbrace{Solving \: both \: equations \: :-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\sf\red{a = 8} and \sf\red{d = -1}

\sf\underbrace{Finding \: 10th \: term \: :-}

\sf{10th \: term = a + 9d }

\implies \sf{8 + 9(-1)}

\implies \sf\purple{-1}

Similar questions