Math, asked by KuttusH2003, 5 months ago

If sum of all x in [0,2π] such that 3cot
2
x+8cotx+3=0 is Kπ then find K

Answers

Answered by Anonymous
1

Answer:

3cot

2

x+8cotx+3=0

Let cotx=y

3y

2

+8y+3=0

Let the roots be y

2

 and y

2

Sum of roots : y

1

+y

2

=

3

−8

Product of roots: $4y_{1}y_{2}=\cfrac{3}{3}=1$$

y

1

=

y

2

1

Since, y=cotx

∴cotx

1

=

cotx

2

1

cotx

1

=tanx

2

tanx

2

=tan(

2

3z

−x

1

)

So,

x

2

=

2

3z

−x

1

x

2

+x

1

=

2

3z

Value of K=

2

3

​ pls friend me

Answered by tyrbylent
1

Answer:

k = \frac{3}{2}  

Step-by-step explanation:

3cot²x + 8cot x + 3 = 0

Let cot x = t

3t² + 8t + 3 = 0

t_{1}t_{2} = \frac{c}{a} = \frac{3}{3} = 1 ⇒ t_{1} and t_{2} are reciprocal ⇒ t_{1} = \frac{1}{t_{2} } .... (1)  

t_{1} = cot x_{1} and t_{2} = cot x_{2} ----> (1)

cot x_{1} = \frac{1}{cot x_{2} } ⇔ cot x_{1} = tan x_{2}

tan x_{2} = tan (\frac{3\pi }{2} - x_{1}) ⇒ \frac{3\pi }{2} - x_{1} = x_{2}x_{1} + x_{2} = \frac{3\pi }{2}

x_{1} + x_{2} = \frac{3}{2} \pik = \frac{3}{2}

Similar questions