If sum of first 6 terms of an A.P is 36 and that of the first 16 terms is 256.Find the sum of first 11 terms.
Answers
• Sum of first 6 terms of an A.p is 36
• First 16 terms is 256
• Sum of first 11 terms.
★ Sum of n terms = n/2(2a+(n-1)×d)
According to question!
Case (I).
Sn = n/2(2a+(n-1)×d)
Putting values,
➡ S6= 6/2(2a+(6-1)×d)
➡ 36/3 = (2a+6d-d)
➡12 = (2a+5d)
➡ 2a+5d= 12 ______________(1)
Case (II).
Sn = n/2 (2a+(n-1)×d
Putting value,
➡S16 = 16/2(2a+(16-1)×d)
➡ 256/8= 2a + 16d -d
➡ 32 = 2a+15d
➡2a+15d =32_____________(2)
Solve equation (1) and (2)
➡ 10d = 20
➡d= 20/10
➡d= 2. [ Common Difference ]
Putting value of d in eq (1)
• 2a+5d =12
➡2a +5×2=12
➡2a +10=12
➡ 2a=12-10
➡2a = 2
➡a= 2/2
➡ a= 1. [ First terms ]
Now
★Sum of 11 terms = n/2(2a+(n-1)×d)
➡ S11 = 11/2(2×1+(11-1)×2)
➡ S11= 5.5(2+ 10×2)
➡ S11= 5.5× 22
➡S11 = 121
- Sum of First 11 term is 121.
____________________________
- Sum of 11 terms is 121
━━━━━━━━━━━━━━━
- Sum of first 6 terms = 36
- Sum of first 16 terms = 256
━━━━━━━━━━━━━━━
- sum of first 11 terms = ??
━━━━━━━━━━━━━━━
☆
----- ( i )
☆
----- ( ii )
- subtract eq i from ii
- putting value of d in eq i
- finding sum of 11 terms
━━━━━━━━━━━━━━━