Math, asked by vamsiakshay200pdhp21, 3 months ago

If sum of 'n' terms of an A.P . is 3n2+5n and am=164 , then m=​

Answers

Answered by nanda132
6

m = 27

Step-by-step explanation:

Sn = 3n2+5n

putting value for 'n' as 1,2,3..

S1 = 3*1'2 + 5*1

= 3+5

= 8 = a

S2 = 3*2'2 + 5*2

= 3*4 + 10

= 12 + 10

= 22

t2 = 22-8

= 14

d = 14-8

= 6

am = 164

164 = a + (m-1)d

164 = 8 + (m-1)6

164-8/6 = (m-1)

26 = (m-1)

26+1 = m

27 = m

Hope its helpful for you.

Mark me as a brainliest.

Answered by amansharma264
12

EXPLANATION.

Sum of n terms of an A.P. = 3n² + 5n.

As we know that,

⇒ Tₙ = Sₙ - Sₙ₋₁.

⇒ 3n² + 5n - [3(n - 1)² + 5(n - 1)].

⇒ 3n² + 5n - [3(n² + 1 - 2n) + 5n - 5].

⇒ 3n² + 5n - [3n² + 3 - 6n + 5n - 5].

⇒ 3n² + 5n - [3n² - n - 2].

⇒ 3n² + 5n - 3n² + n + 2.

⇒ 5n + n + 2.

⇒ 6n + 2 = Algebraic expression.

As we know that,

Put the value of n = 1 in equation, we get.

⇒ 6(1) + 2.

⇒ 6 + 2.

⇒ 8.

Put the value of n = 2 in equation, we get.

⇒ 6(2) + 2.

⇒ 12 + 2.

⇒ 14.

Put the value of n = 3 in equation, we get.

⇒ 6(3) + 2.

⇒ 18 + 2.

⇒ 20.

Put the value of n = 4 in equation, we get.

⇒ 6(4) + 2.

⇒ 24 + 2.

⇒ 26.

Their Series = 8, 14, 20, 26,,,,,,

First term of an A.P. = a = 8.

Common difference of an A.P. = d = b - a = 14 - 8 = 6.

As we know that,

General equation of an A.P.

⇒ Tₙ = a + (n - 1)d.

⇒ T(m) = a + (m - 1)d.

⇒ 164 = a + (m - 1)d.

⇒ 164 = 8 + (m - 1)6.

⇒ 164 = 8 + 6m - 6.

⇒ 164 = 6m + 2.

⇒ 164 - 2 = 6m.

⇒ 162 = 6m.

⇒ m = 27.

                                                                                                                           

MORE INFORMATION.

Supposition of terms in A.P.

(1) = Three terms as : a - d, a, a + d.

(2) = Four terms as : a - 3d, a - d, a + d, a + 3d.

(3) = Five terms as : a - 2d, a - d, a, a + d, a + 2d.

Similar questions