Math, asked by dhruvishah348, 3 months ago

If sum of ten observations is 210,sum of their squares is 4612.5. find out C.V.​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

 \sf \: Let \:  x_1, \: x_2, \: x_3, \:  -  -  -  -,x_{10}  \: be \: 10 \: observations.

  • According to statement,

 \sf \: sum \: of \: 10 \: observations, \:  \displaystyle\sum_{i=1}^n{x _i} \:  =  \: 210

So,

  • Mean of 10 observations is

\rm :\longmapsto\:\bf \:{\overline x } = \bf \:\dfrac{\: \displaystyle\sum_{i=1}^n({x _i} )}{n}

\rm :\longmapsto\:{\overline x } = \dfrac{210}{10}

\bf\implies \:{\overline x } = 21 -  -  - (1)

Again,

According to statement,

  • Sum of the squares of 10 observations = 4612.5

\rm :\implies\:\:  \displaystyle\sum_{i=1}^n{x _i}^{2}  = 4612.5

We know,

  • Variance of given observations is evaluated by

\rm :\longmapsto\:Variance  \: = \:  \dfrac{\displaystyle\sum_{i=1}^n{x _i}^{2}}{n}  \:  -   \: {({\overline x })}^{2}

\rm :\longmapsto\:Variance = \dfrac{4612.5}{10}  -  {(21)}^{2}

\rm :\longmapsto\:Variance = 461.25 - 441

\bf\implies \:Variance = 20.25

Now,

  • Standard deviation of given data is evaluated by

\rm :\longmapsto\:Standard \:  deviation \: ( \sigma \: ) =  \sqrt{Variance}

\rm :\longmapsto\:Standard \:  deviation \: ( \sigma \: ) =  \sqrt{20.25}

\bf :\longmapsto\:Standard \:  deviation \: ( \sigma \: ) =  4.5

Now,

We know that,

  • Coefficient of variation, C.V. is evaluated as

\rm :\longmapsto\:C.V.  = \dfrac{\sigma \:}{{\overline x }}  \times 100\%

\rm :\longmapsto\:C.V.  = \dfrac{4.5}{21}  \times 100\%

\bf\implies \:C.V.  = 21.43\% \: approx.

Similar questions