Math, asked by pradeeppaswan677, 8 months ago

If Sum of term of an AP is 295 and first term 7
common diff 5
Then find the value of no​

Answers

Answered by atahrv
5

Answer :

 \large \boxed{\bf{\star\:\:n\:=\:10\:\:\star}}

Explanation :

Given :–

  •  \sf{ S_n  \: =  \: 295}
  •  \sf {a \:  =  \: 7}
  •  \sf {d \:  =  \: 5}

To Find :–

  • The nth Term which make a sum of 295.

Formula Applied :–

  • \boxed{\bf{\star\:\:S_n\:=\:\dfrac{n}{2}\:[2a\:+\:(n\:-\:1)d]\:\:\star}}

Solution :–

We have, a = 7 , d = 5 and Sn = 295 .

Putting these values in the Formula :

\sf{S_n\:=\:\dfrac{n}{2}\:[2a\:+\:(n\:-\:1)d]}

 \rightarrow  \sf{295\:=\:\dfrac{n}{2}\:[2(7)\:+\:(n\:-\:1)(5)]}

 \rightarrow  \sf{295\:=\:\dfrac{n}{2}\:(14\:+\:5n \:  -  \: 5)}

 \rightarrow  \sf{295 \:  \times  \:2 \:=\:n\:(14\:+\:5n \:  -  \: 5)}

 \rightarrow  \sf{590 \:=\:n\:(9\:+\:5n)}

 \rightarrow  \sf{590 \:= \: 9n\:+\:5n^{2} }

 \rightarrow  \sf{5n^{2} \:  +  \: 9n \:  -  \: 590 \:  =  \: 0 }

 \rightarrow  \sf{5n^{2} \:  +  \: 59n \:  -  \: 50n \:  -  \: 590 \:  =  \: 0 }

 \rightarrow  \sf{n(5n \:  +  \: 59)       -  10 (5n \:   +  \: 59 )\:  =  \: 0 }

 \rightarrow  \sf{(n \: -   \: 10 )(5n \:   +  \: 59 )\:  =  \: 0 }

 \rightarrow  \sf{n  \:  =  \: 10 \:, \: (  - \dfrac{59}{5})   }

∵ n cannot be a fraction , in decimal form or negative .

So will simply ignore the negative fraction value.

∴ 10 terms will give a Sum of 295 .

Answered by Rohith200422
8

Question:

If Sum of term of an AP is 295 and first term 7, common difference 5 .Then find the no.of terms.

To find:

★ No.of terms ( n ).

Answer:

 No.of\:terms\:\underline{\:\bold{\sf\pink{n\:is\:10}}\:}

Given:

★ Sum of n term of an A.P. \underline{ \: S _{n} = 295 \: }

 \bigstar First \: term \: \underline{ \: a = 7 \: }

 \bigstar Common \: difference \:  \underline{ \: d =  5\: }

Step-by-step explanation:

We know that,

 \boxed{ S _{n} =  \frac{n}{2}  \big[2a + (n - 1)d \big]}

Now substituting the values,

 \implies 295 =  \frac{n}{2}  \big[2(7) + (n - 1)5 \big]

 \implies 590 =  n \big[14 + 5n - 5 \big]

 \implies 590 =  n \big[9+ 5n  \big]

 \implies 590 =  9n+ 5 {n}^{2}

 \implies 5 {n}^{2}  + 9n - 590 = 0

Now factorisation, ( you can also use formula method )

 \implies 5 {n}^{2}  + 59n -50n -  590 = 0

 \implies n(5n + 59) - 10(5n + 59)

 \implies (5n + 59)(n - 10) = 0

 \implies 5n + 59 = 0 \:  \: or \:  \: n - 10 = 0

 \implies n  \not=   \frac{ - 59}{5}  \:  \: or \:  \:  \boxed{n  = 10}

Since, No. of terms will not be in negative.

 \therefore No.of\:terms\:\underline{\:\bold{n\:is\:10}\:}

More information:

Arithmetic Progression :

In a sequence the difference between two consecutive terms are equal it is called Arithmetic Progression .

General form :

 a,a+d,a+2d,a+3d,.....

 \bigstar \:  {n}^{th}  \: term :

t _{n} = a + (n - 1)d

No. of terms :

n =  \big(\frac{l  - a}{d}  \big) + 1

Common difference :

d = t _{2} - t _{1}

Similar questions