Physics, asked by anilsinh3070, 9 months ago

If sum of the two roots of the quadratic equation x2 - ax + b =0 is same as the twice
of their difference, then
(a)3a2 = b
(b)a2 = 16b
(c)3a2 = 26
(d)3a2 = 16b​

Answers

Answered by shadowsabers03
3

Let the roots of the quadratic equation \sf{x^2-ax+b=0} be \alpha and \beta where \alpha\ \textgreater\ \beta. Then we have,

  • \sf{\alpha+\beta=a}

  • \sf{\alpha\beta=b}

Because for a quadratic equation \sf{px^2+qx+r=0\quad (p\neq0)} having roots \alpha\ \&\ \beta,

  • \sf{\alpha+\beta=-\dfrac{q}{p}}

  • \sf{\alpha\beta=\dfrac{r}{p}}

Then, given,

\longrightarrow\sf{\alpha+\beta=2(\alpha-\beta)}

\longrightarrow\sf{a=2\sqrt{(\alpha-\beta)^2}}

\longrightarrow\sf{a=2\sqrt{\alpha^2+\beta^2-2\alpha\beta}}

\longrightarrow\sf{a=2\sqrt{\alpha^2+\beta^2+2\alpha\beta-4\alpha\beta}}

\longrightarrow\sf{a=2\sqrt{(\alpha+\beta)^2-4\alpha\beta}}

\longrightarrow\sf{a=2\sqrt{a^2-4b}}

\longrightarrow\sf{a^2=4(a^2-4b)}

\longrightarrow\sf{a^2=4a^2-16b}

\longrightarrow\sf{\underline{\underline{3a^2=16b}}}

Similar questions