Math, asked by priteshkumarsingh8, 4 months ago

If sum of the zeroes of the polynomial x2 - kx + 8 is 6, then the value of
k will be​

Answers

Answered by suhail2070
1

Answer:

therefore \:  \:  \:  \: k = 6

Step-by-step explanation:

 {x}^{2}  - kx + 8 = 0 \\  \\ sum \: of \: zeroes \:  = 6 \\  \\  -  \frac{coefficient \: of \: x}{ coefficient \: of \:  {x}^{2} }  \\  \\  =  \frac{ - ( - k)}{1}  = 6 \\  \\ therefore \:  \:  \:  \: k = 6

Answered by mathdude500
1

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{a \: polynomial \:  {x}^{2} - kx + 8 } \\ &\sf{sum \: of \: zeroes \:  =  \: 6} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{ \: value \: of \: k}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

Now,

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

OR

\boxed{\purple{\tt Sum\ of\ the\ zeroes=\frac{-b}{a}}}

Given polynomial is

 \sf \:  {x}^{2}  - kx \:  + 8

\red{\sf Sum\ of\ the\ zeroes=\dfrac{-coefficient\ of\ x}{coefficient\ of\ x^{2} } = 6}

:  \implies  \tt \:  - \dfrac{( - k)}{1}  = 6

:  \implies  \large\boxed{ \purple{  \tt \: k \:  =  \: 6}}

Similar questions