Math, asked by Akbhai4TASAGgo8kit, 1 year ago

If sum of three numbers in.an A.P. is 12. And sum of their squares is 288. Then find the numbers.

Answers

Answered by 8j2014
15

let the nos be a , a+d , a+2d

Given that S=12

⇒ a + a + d + a + 2d = 12

3(a + d) =12

a + d = 4

a = 4 - d                 ----(1)

And sum of their cubes is 288.

(a)3 + (a + d)3 + (a + 2d)3 = 288

a3 + a3 +d3 +3a2d +3ad2 +a3 + 8d3 + 6a2d +12ad=288

3a3 + 9d3 +9a2d +15ad2 =288

from (1)

3(4-d)3 + 9d3 +9(4-d)2d +15(4-d)d2 = 288               

3(64 -d3 -48d +12d2 )   + 9d3 + 9(16 + d2 -8d) d  + (60 -15d)d= 288

192 - 3d3 - 144d + 36d2 +9d+ 144d + 9d3 - 72d2 +60d2 - 15d3 = 288

24d2 = 288 -192

24d2 =96

d2 = 96/24

d2 = 4

d = ±2 

For d = 2, a = 4 – d = 4 – 2 = 2

The numbers will be 2, 4 and 6.  

For d = - 2, a = 4 - (-2) = 4 + 2 = 6

The numbers will be 6, 4 and 2.  

Hence, the required numbers are 2, 4 and 6.

Similar questions