Math, asked by nihathegreat, 8 months ago

if sum of zeros of a quadratic polynomial is 10 and product of zeros is 39 then find polynomial​

Attachments:

Answers

Answered by iambhaskar6258
0

Answer:

from Formulae....X²-(a+b)x+ab where a and b are roots then x²-10x+39 is the polynomial where sum and Products are given in the Question it self

Answered by Anonymous
43

   \:\:\:\:\:\:\:\:\:\:\:\:\:\: \large\mathfrak{\dag \: Given   : }\:\:\:\:\:\:\:\:\:\:\:\:\:\:

  • Sum of Zeroes ( α + β ) = 10
  • Product of Zeroes ( αβ ) = 39
  • Quadratic Polynomial = ?

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

   \:\:\:\:\:\:\:\:\:\:\:\:\:\: \large\mathfrak{\dag \: Required \: Solution  : }\:\:\:\:\:\:\:\:\:\:\:\:\:\:

  \\

\underline{\bigstar\:\textsf{According to the given Question :}}\\\\

:\implies\sf Polynomial=x^2-(Sum\:of\:Zeroes)x+Product\:of\:Zeroes\\\\\\:\implies\sf Polynomial=x^2 -(\alpha + \beta)x + ( \alpha \beta)\\\\\\:\implies\sf Polynomial=x^2 - ( 10)x + 39\\\\\\:\implies\underline{\boxed{\sf\red{ Polynomial=x^2 -10x + 39}}}

\therefore\:\underline{\textsf{Required polynomial is  \textbf{x$^\text2$ -10x + 39}}}.

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀\rule{180}{1.5}

\boxed{\begin{minipage}{5.5 cm} {$\bigstar\: \textsf{For a Quadratic Polynomial :}}\\\\ {\qquad\sf p(x) = ax$^\sf2$ \sf + bx + c}\\\sf with zeroes \alpha\:\sf and\:\beta \\\\\\ {\textcircled{\footnotesize1}} \:\:\alpha +\beta= \dfrac{ - \:b}{a}\:\:\bigg\lgroup\bf Sum\:of\:Zeroes\bigg\rgroup \\\\\\{\textcircled{\footnotesize2}} \: \:\alpha  \beta= \sf\dfrac{c}{a}\:\:\bigg\lgroup\bf Product\:of\:Zeroes\bigg\rgroup\end{minipage}}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀

Similar questions