Math, asked by ai051639, 1 month ago

If sums of n 2n and 3n terms of an AP are S1,S2 andS3 respectively then S3 /(S2 - S1)

0

1

2

3

Answers

Answered by MagicalBeast
2

Given :

  • Sum of first n terms of AP = S₁
  • Sum of first 2n terms of AP = S₂
  • Sum of first 3n terms of AP = S₃

To find :

\sf \dfrac{S_3}{(S_2-S_1)}

Formula used :

 \sf \:  Sum  \: of  \: n \:  term  \: of  \: AP  \: = \dfrac{n}{2}  \bigg( \: 2a + (  \: n \: - \:  1 \: )d  \: \bigg)

Here,

  • n = number of terms
  • a = 1st tern
  • d = common terms

Solution :

\sf \bullet \:  S_1 = \dfrac{n}{2}  \bigg( \: 2a + (  \: n \: - \:  1 \: )d  \: \bigg) \\ \sf \bullet \: S_2 = \dfrac{2n}{2}  \bigg( \: 2a + (  \:2 n \: - \:  1 \: )d  \: \bigg) \\ \sf \bullet \: S_3 = \dfrac{3n}{2}  \bigg( \: 2a + (  \:3 n \: - \:  1 \: )d  \: \bigg)

This gives,

\sf \implies \:  \dfrac{S_3}{(S_2-S_1)} \:  =  \:  \dfrac{ \dfrac{3n}{2}  \bigg( \: 2a + (  \:3 n \: - \:  1 \: )d  \: \bigg)}{\dfrac{2n}{2}  \bigg( \: 2a + (  \:2 n \: - \:  1 \: )d  \: \bigg) \:  -  \: \dfrac{n}{2}  \bigg( \: 2a + (  \: n \: - \:  1 \: )d  \: \bigg)  }

Take (n/2) common in numerator and denominator

\sf \implies \:  \dfrac{S_3}{(S_2-S_1)} \:  =  \:  \dfrac{ \dfrac{n}{2}   \times 3 \times \bigg( \: 2a + (  \:3 n \: - \:  1 \: )d  \: \bigg)}{ \bigg(\dfrac{n}{2}   \bigg)\bigg(  \: 2 \times (\: 2a + (  \:2 n \: - \:  1 \: )d \: )  \:  \:  -  \:\: 2a + (  \: n \: - \:  1 \: )d  \: \bigg)  }

\sf \implies \:  \dfrac{S_3}{(S_2-S_1)} \:  =  \:  \dfrac{ 3\bigg( \: 2a + (  \:3 n \: - \:  1 \: )d  \: \bigg)}{ \bigg(  \: 4a +2 (  \:2 n \: - \:  1 \: )d \:  \:  \:  -  \:\: 2a + (  \: n \: - \:  1 \: )d  \: \bigg)  }

\sf \implies \:  \dfrac{S_3}{(S_2-S_1)} \:  =  \:  \dfrac{ 3\bigg( \: 2a +  (3n \: - \:  1 \: )d  \: \bigg)}{ \bigg(  \: 4a  + 4 n d\: - 2d \:  -  \: 2a -  \: nd \:  +  d  \: \bigg)  }

\sf \implies \:  \dfrac{S_3}{(S_2-S_1)} \:  =  \:  \dfrac{3 \bigg( \:2 a +  \:3nd \: - \:  d  \: \bigg)}{ \bigg(  \: 2a  + 3 n d\: - d \:  \: \bigg)  }

cancel out common term from numerator and denominator

\sf \implies \:  \dfrac{S_3}{(S_2-S_1)} \:  =  \: 3

ANSWER : 3

Similar questions