Math, asked by Anonymous, 7 months ago

if sun \sf \theta = -\dfrac{7}{25}\: and \theta \:is in the third quadrant ,then \dfrac{7cot \theta -24tan \theta }{7cot \theta +24 tan \theta } =​

Answers

Answered by AdorableMe
25

Answer :-

\displaystyle \bf{ \frac{17}{31} }

Step-by-step explanation :-

\sf{sin\theta=-\dfrac{7}{25} }

Using sin²θ + cos²θ = 1,

\displaystyle \sf{\bigg(\frac{-7}{25}\bigg)^2 +cos^2\theta=1}

\implies\displaystyle \sf{cos^2\theta=1-\frac{49}{625} }

\implies\displaystyle \sf{cos^2\theta=\frac{625}{625}-\frac{49}{625}  }

\displaystyle \sf{\implies cos^2\theta=\frac{576}{625} }

\displaystyle \sf{\implies cos\theta=\pm\frac{24}{25} }

As θ is in third quadrant, so cosθ will be -24/25.

_____________________

\displaystyle \bf{ tan\theta=\frac{sin\theta}{cos\theta} }

\displaystyle \sf{\implies tan\theta=\frac{-7}{25}\div \frac{-24}{25}  }

\displaystyle \sf{\implies tan\theta=\frac{-7}{25}\times\frac{25}{-24}  }

\displaystyle \sf{\implies tan\theta=\frac{7}{24} }

______________________

\displaystyle \bf{ cot\theta=\frac{1}{tan\theta}}

\displaystyle \sf{\implies cot\theta=\frac{24}{7} }

______________________

\displaystyle \sf{\frac{7cot\theta-24tan\theta}{7cot\theta+24tan\theta} }

\displaystyle \sf{= \frac{7\times\frac{24}{7}-24\times\frac{7}{24}  }{7\times\frac{24}{7}+24\times\frac{7}{24}  } }

\displaystyle \sf{= \frac{24-7}{24+7} }

\displaystyle \sf{= \frac{17}{31} }

Similar questions