if sun in the third quadrant ,then =
Answers
Step-by-step explanation :-
Using sin²θ + cos²θ = 1,
As θ is in third quadrant, so cosθ will be -24/25.
_____________________
______________________
______________________
\huge\boxed{\fcolorbox{purple}{ink}{Answer}}
Answer
\displaystyle \bf{ \frac{17}{31} }
31
17
Step-by-step explanation :-
\sf{sin\theta=-\dfrac{7}{25} }sinθ=−
25
7
Using sin²θ + cos²θ = 1,
\displaystyle \sf{\bigg(\frac{-7}{25}\bigg)^2 +cos^2\theta=1}(
25
−7
)
2
+cos
2
θ=1
\implies\displaystyle \sf{cos^2\theta=1-\frac{49}{625} }⟹cos
2
θ=1−
625
49
\implies\displaystyle \sf{cos^2\theta=\frac{625}{625}-\frac{49}{625} }⟹cos
2
θ=
625
625
−
625
49
\displaystyle \sf{\implies cos^2\theta=\frac{576}{625} }⟹cos
2
θ=
625
576
\displaystyle \sf{\implies cos\theta=\pm\frac{24}{25} }⟹cosθ=±
25
24
As θ is in third quadrant, so cosθ will be -24/25.
_____________________
\displaystyle \bf{ tan\theta=\frac{sin\theta}{cos\theta} }tanθ=
cosθ
sinθ
\displaystyle \sf{\implies tan\theta=\frac{-7}{25}\div \frac{-24}{25} }⟹tanθ=
25
−7
÷
25
−24
\displaystyle \sf{\implies tan\theta=\frac{-7}{25}\times\frac{25}{-24} }⟹tanθ=
25
−7
×
−24
25
\displaystyle \sf{\implies tan\theta=\frac{7}{24} }⟹tanθ=
24
7
______________________
\displaystyle \bf{ cot\theta=\frac{1}{tan\theta}}cotθ=
tanθ
1
\displaystyle \sf{\implies cot\theta=\frac{24}{7} }⟹cotθ=
7
24
______________________
\displaystyle \sf{\frac{7cot\theta-24tan\theta}{7cot\theta+24tan\theta} }
7cotθ+24tanθ
7cotθ−24tanθ
\displaystyle \sf{= \frac{7\times\frac{24}{7}-24\times\frac{7}{24} }{7\times\frac{24}{7}+24\times\frac{7}{24} } }=
7×
7
24
+24×
24
7
7×
7
24
−24×
24
7
\displaystyle \sf{= \frac{24-7}{24+7} }=
24+7
24−7
\displaystyle \sf{= \frac{17}{31} }=
31
17