Math, asked by eaybx, 10 months ago

if t + 1 divided by t = 8 then find the value of t cube +1/t cube​

Answers

Answered by 26Apoorv
2

.t + 1/t = 8

.(t + 1/t)^3 = t3 + 1/t3 + 3t + 3/t = t3 + 1/t3 + 3(t + 1/t)

. 8^3 = t3 + 1/t3 + 3×8

.512 = t3 + 1/t3 + 24

.488 = t3 + 1/t3

Hence ans. is 488

Hope it helps

Cheers

Answered by Salmonpanna2022
6

Step-by-step explanation:

Question:-

 \mathrm{If \: t +  \frac{1}{t}  = 8 \: then \: find \: the \: value \: of \: {t}^{3} +  \frac{1}{ {t}^{3} }   } \\  \\

Solution:-

Let's solve the problem

we have,

 \mathrm{t +  \frac{1}{t} } = 8 \\

Cubing on both sides, using algebraic Identity:

(a+b)³ = a³ + b³ + 3ab (a+b)

we get

 \mathrm{ \bigg(t +  \frac{1}{t}  \bigg)^{3} = (8 {)}^{3}  } \\  \\

⟹ \mathrm{ {t}^{3} +  \frac{1}{ {t}^{3} }   + 3( \cancel{t}) \bigg( \frac{1}{ \cancel{t}} \bigg) \bigg(t +  \frac{1}{t}   \bigg) = 512} \\  \\

⟹ \mathrm{ {t}^{3} +  \frac{1}{ {t}^{3} }  + 3 \bigg(t +  \frac{1}{t} \bigg) = 512  } \\  \\

⟹  \mathrm{{t}^{3}  +  \frac{1}{ {t}^{3} }  + 3(8) = 512} \\  \\

⟹  \mathrm{{t}^{3}  +  \frac{1}{ {t}^{3} }  + 24 = 512} \\  \\

⟹  \mathrm{{t}^{3}  +  \frac{1}{ {t}^{3} }   = 512 - 24} \\  \\

⟹  \mathrm{{t}^{3}  +  \frac{1}{ {t}^{3} }  = 488} \\  \\

Answer:-

 \mathrm{Hence \:  the \:  value  \: of \:  {t}^{3}  +  \frac{1}{ {t}^{3} } \: is  \: 488. } \\  \\

Used formulae:-

(a+b)³ = a³+b³+3ab(a+b)

:)

Similar questions