Math, asked by Kavithakonatham605, 8 months ago

If 't'is the parameter, then the locus of the point (a-bt, b-a/t)

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\mathsf{\left(a-b\,t,\dfrac{b-a}{t}\right)}

\underline{\textbf{To find:}}

\mathsf{Locus\;of\;the\;point\;\left(a-b\,t,\dfrac{b-a}{t}\right)}

\underline{\textbf{Solution:}}

\textsf{Let the moving point be P(h,k)}

\mathsf{Then,}

\mathsf{h=a-b\,t\;\;\&\;\;k=\dfrac{b-a}{t}}

\mathsf{h-a=-b\,t\;\;\&\;\;k=\dfrac{b-a}{t}}

\textsf{Multiplying these two equations, we get}

\mathsf{(h-a)k=(-b\,t)\left(\dfrac{b-a}{t}\right)}

\mathsf{(h-a)k=-b(b-a)}

\mathsf{hk-ak=-b^2+ab}

\mathsf{hk-ak+b^2-ab=0}

\therefore\textsf{The locus of P is}

\boxed{\mathsf{xy-ay+(b^2-ab)=0}}

Similar questions