Math, asked by sAYAN1321, 9 months ago

If T_n = sin^n+cos^n,prove that (T_3-T_5)/T_1 = (T_5-T_7)/T_3​

Answers

Answered by VishnuPriya2801
7

Solution is in the attachment.

Attachments:
Answered by Anonymous
10

\large\underline{\sf{To\:prove-}}

\rm :\longmapsto\:\dfrac{T_3 - T_5}{T_1} = \dfrac{T_5 - T_7}{T_3}

[\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{ \bf \: 1 - {sin}^{2}x = {cos}^{2}x}

\boxed{ \bf \: 1 - {cos}^{2}x = {sin}^{2}x}

\large\underline{\bf{Solution-}}

Given that,

\rm :\longmapsto\:T_n = {sin}^{n}\theta \: + {cos}^{n}\theta

Thus,

\rm :\longmapsto\:T_1 = {sin}^{}\theta \: + {cos}^{}\theta

\rm :\longmapsto\:T_3 = {sin}^{3}\theta \: + {cos}^{3}\theta

\rm :\longmapsto\:T_5 = {sin}^{5}\theta \: + {cos}^{5}\theta

\rm :\longmapsto\:T_7 = {sin}^{7}\theta \: + {cos}^{7}\theta

Now,

Consider,

\rm :\longmapsto\:\dfrac{T_3 - T_5}{T_1}

\sf \:  =  \:  \: \dfrac{({sin}^{3}\theta + {cos}^{3}\theta) - ( {sin}^{5}\theta + {cos}^{5} \theta)}{sin\theta + cos\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{3}\theta + {cos}^{3}\theta - {sin}^{5}\theta - {cos}^{5} \theta}{sin\theta + cos\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{3}\theta - {sin}^{5}\theta + {cos}^{3}\theta - {cos}^{5} \theta}{sin\theta + cos\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{3}\theta(1 - {sin}^{2}\theta) + {cos}^{3}\theta(1 - {cos}^{2})\theta}{sin\theta + cos\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{3}\theta {cos}^{2}\theta+{cos}^{3}\theta{sin}^{2}\theta}{sin\theta + cos\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{2}\theta {cos}^{2}\theta({cos}^{}\theta + {sin}^{}\theta)}{sin\theta + cos\theta}

\sf \:  =  \:  \: {sin}^{2}\theta + {cos}^{2}\theta =  sin

\bf\implies \:\:\dfrac{T_3 - T_5}{T_1} = {sin}^{2}\theta {cos}^{2}\theta - - (1)

Consider,

\rm :\longmapsto\:\dfrac{T_5 - T_7}{T_3}

\sf \:  =  \:  \: \dfrac{({sin}^{5}\theta + {cos}^{5}\theta) - ( {sin}^{7}\theta + {cos}^{7} \theta)}{ {sin}^{3}\theta + {cos}^{3}\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{5}\theta + {cos}^{5}\theta-{sin}^{7}\theta - {cos}^{7} \theta}{ {sin}^{3}\theta + {cos}^{3}\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{5}\theta - {sin}^{7}\theta + {cos}^{5}\theta - {cos}^{7} \theta}{ {sin}^{3}\theta + {cos}^{3}\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{5}\theta(1 - {sin}^{2}\theta) + {cos}^{5}\theta(1 - {cos}^{2}\theta)}{ {sin}^{3}\theta + {cos}^{3}\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{5}\theta{cos}^{2}\theta+ {cos}^{5}\theta{sin}^{2}\theta}{ {sin}^{3}\theta + {cos}^{3}\theta}

\sf \:  =  \:  \: \dfrac{{sin}^{2}\theta{cos}^{2}\theta \: ({cos}^{3}\theta + {sin}^{3}\theta)}{ {sin}^{3}\theta + {cos}^{3}\theta}

\sf \:  =  \:  \: {sin}^{2}\theta {cos}^{2}\theta =  sin

\bf\implies \:\:\dfrac{T_5 - T_7}{T_3} = {sin}^{2}\theta {cos}^{2}\theta - - (2)

Hence,

From equation (1) and equation (2), concluded that

\bf :\longmapsto\:\dfrac{T_3 - T_5}{T_1} = \dfrac{T_5 - T_7}{T_3}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Similar questions