Math, asked by zahidahme3pbmy1b, 1 year ago

if t square - 4t + 1=0 then the value of t cube + 1/t cube is = ?
solv plzz

Attachments:

Answers

Answered by abhi569
26
=> t² – 4t + 1 =0

=> t² + 1 = 4t

=> ( t² + 1 ) ÷ t = 4

 =>  \frac{ {t}^{2} }{t}  +  \frac{1}{t}  = 4 \\  \\  => t +  \frac{1}{t}  = 4




Now, Cubing on both sides,


 =  >  {(t +  \frac{1}{t}) }^{3}  =  {4 }^{3}  \\  \\  \\  =>  {t}^{3}  +  \frac{1}{t ^{3} }  + 3(t +  \frac{1}{t} )(t \times  \frac{1}{t} ) = 64 \\  \\  \\  =>  {t}^{3}  +  \frac{1}{ {t}^{3} }  + 3(4)(1) = 64 \\  \\  \\  =>  {t}^{3}  +  \frac{1}{ {t}^{3} }  = 64 - 12 \\  \\  \\  =  >  {t}^{3}  +  \frac{1}{ {t}^{3} }   = 52

zahidahme3pbmy1b: thnks
abhi569: Welcome
Answered by aquialaska
4

Answer:

Value of t^3+\frac{1}{t^3} is 52.

Step-by-step explanation:

Given: t² - 4t + 1 = 0

To find: Value of t^3+\frac{1}{t^3}

Using quadratic formula we find the solution of given quadratic equation.

t=\frac{-b\pm\sqrt{b^-4ac}}{2a}=\frac{-(-4)\pm\sqrt{(-4)^2-4(1)(1)}}{2(1)}

t=\frac{4\pm\sqrt{16-4}}{2}=\frac{4\pm2\sqrt{3}}{2}=2\pm\sqrt{3}

let, t = 2 + √3

then,

\frac{1}{t}=\frac{1}{2+\sqrt{3}}=\frac{1}{2+\sqrt{3}}\times\frac{2-\sqrt{3}}{2-\sqrt{3}}=\frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}=\frac{2-\sqrt{3}}{2^2-(\sqrt{3})^2}

t=\frac{2-\sqrt{3}}{4-3}=2-\sqrt{3}

t + 1/t = 2 + √3 + 2 - √3 = 2 + 2 = 4

So,

(a + b)³ = a³ + b³ + 3ab( a + b )

a³ + b³ =(a + b)³ - 3ab( a + b )

put, a = t and b = 1/t

we get

t^3+\frac{1}{t^3}=(t+\frac{1}{t})^3-3(t)(\frac{1}{t})(t+\frac{1}{t})=(4)^3-3(4)=64-12=52

Therefore, Value of t^3+\frac{1}{t^3} is 52.

Similar questions