Geography, asked by sumanchhaparwal1982, 10 months ago

if t1 t2 t3 are distinct the points (t1,2at1,at1^3 )(t2,2at2,at2^3)and (t3,2at3,at3^3) are collinear then show that t1^3+t2^3+t^3=3t1t2t3​

Answers

Answered by anshumansamal027
1

Answer:

dont know soory

Explanation:

Answered by nithinvarmau
0

Answer:

Correct option is

A

t  

1

t  

2

t  

3

=−1

Let points are P(t  

1

.2at  

1

+at  

1

3

) ,Q(t  

1

,2at  

2

+at  

1

3

) and R(t  

3

,2at  

3

+at  

3

3

)

P,Q and R are collinear

⇒area ( ΔPQR) =0

⇒  

 

1

1

1

 

t  

1

 

t  

2

 

t  

2

 

 

2at  

1

+at  

1

3

 

2at  

2

+at  

2

3

 

2at  

3

+at  

3

3

 

 

=0

⇒  

 

1

1

1

 

t  

1

 

t  

2

 

t  

3

 

 

2at  

1

 

2at  

2

 

2at  

3

 

 

+  

 

1

1

1

 

t  

1

 

t  

2

 

t  

3

 

 

at  

1

3

 

at  

2

3

 

at  

3

3

 

 

=0

⇒2a  

 

1

1

1

 

t  

1

 

t  

2

 

t  

3

 

 

t  

1

 

t  

2

 

t  

3

 

 

+a  

 

1

1

1

 

t  

1

 

t  

2

 

t  

3

 

 

t  

1

3

 

t  

2

3

 

t  

3

3

 

 

=0

Determinant is zero if two rows of a determinant are same  

⇒0+a  

 

1

1

1

 

t  

1

 

t  

2

 

t  

3

 

 

t  

1

3

 

t  

2

3

 

t  

3

3

 

 

=0

R  

2

→R  

2

−R  

1

         R  

3

→R  

3

−R  

1

 

⇒  

 

1

1

0

 

t  

1

 

t  

2

−t  

1

 

t  

2

−t  

1

 

 

t  

1

3

 

t  

2

3

−t  

1

3

 

t  

3

3

−t  

1

3

 

 

=0

⇒(t  

2

−t  

1

)(t  

3

−t  

1

)  

 

1

0

0

 

t  

1

 

1

1

 

t  

1

3

 

t  

1

2

+t  

1

t  

2

+t  

2

2

 

t  

1

2

+t  

1

t  

3

+t  

3

2

 

 

=0

⇒(t  

2

−t  

1

)(t  

2

−t  

1

)[t  

1

2

+t  

!

t  

2

+t  

3

2

−t  

1

2

−t  

1

t  

2

−t  

2

2

]=0

⇒(t  

2

−t  

1

)(t  

3

−t  

1

)[t  

2

3

+t  

1

t  

3

−t  

1

t  

2

−t  

2

2

]=0

⇒(t  

2

−t  

1

)(t  

3

−t  

1

)(t  

3

−t  

2

)(t  

1

+t  

2

+t  

3

)=0

as t  

1

 

=t  

2

 

=t  

3

 

⇒t  

2

−t  

1

 or t  

3

−t  

1

 or t  

3

−t  

2

 can't be zero

⇒t  

1

+t  

2

+t  

3

=0

Explanation:

Similar questions