Math, asked by bhawani22, 7 days ago

If t3– 2t2– pt + q is divided by t2– 2t – 3, the remainder is t – 6 then,find the pair of linear equations in p and q.​

Answers

Answered by amitnrw
8

Given :   t³– 2t²– pt + q is divided by t²– 2t – 3, the remainder is t – 6

To Find : values p and q.​

Solution:

Dividend = Divisor x Quotient + remainder

f(x) = g(x)q(x) + r(x)

Dividend =    t³– 2t²– pt + q  => degree 3

Divisor  t²– 2t – 3  => degree  2

Hence degree of Quotient = 3 - 2 =  1

Let say Quotient is  at + b

t³– 2t²– pt + q  = (t²– 2t – 3)(at  + b)  + t  -  6

=> t³– 2t²– (p+1)t + (q+ 6) =   (t²– 2t – 3)(at  + b)

Solving RHS

= (t²– 2t – 3)(at  + b)

= at³ + (b - 2a)t² - (2b + 3a)t  -3b

Equating with  LHS

t³– 2t²– (p+1)t + (q+ 6)

a = 1

b - 2a  = -2   => b - 2 =  -2  => b = 0

-3b = q + 6  => 0 = q + 6  => q  = - 6

2b + 3a  = p + 1

=>  3 = p + 1

=> p  = 2

p = 2  and  q  = - 6

                               t

          t²– 2t – 3  )   t³– 2t²– 2t - 6  (

                                t³– 2t²– 3t

                              ____________

                                               t - 6

Hence verified

p = 2  and  q  = - 6

Learn More:

difference of 6 from the quotient when 270 is x 30

brainly.in/question/35544579

, the divisor is 5 times the quotient and twice the

brainly.in/question/34322345

dividend 1414,quotient 157 ,remainder 1,what is the divisor ..

brainly.in/question/12234016

Similar questions