Math, asked by Ayaanayaan, 1 day ago

if t⁴=10 and t⁸=30 d=??
ap ​

Answers

Answered by SultanAfridi
0

Answer:

d=5

Step-by-step explanation:

 {t}^{4}  = 10 \\ t + 3d = 10 \:  \:  \:  \: ...(1) \\ and \: \:  \:  \:  t + 7d = 30 \:  \:  \: ...(2) \\ subtract \: eq(2) \: \: from \: eq(1) \:  \:  -  \\  \: t + 7d   - t - 3d = 30 - 10 \\ 4d = 20 \\ d = 5 \:  \:  \:  \:  \:  \:  \: (answer)

Answered by mathdude500
4

Given Question :-

In an AP series,

\rm \: t_4 = 10 \:  \: and \:  \: t_8 = 30, \:  \: find \: d \\

\large\underline{\sf{Solution-}}

Given that,

In an AP series,

\rm \: t_4 = 10 \: \\  \\ \rm \:  \: t_8 = 30 \:   \\

Let assume that

First term of an AP series is a

Common difference of an AP series is d

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{t_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

tₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

\rm \: t_4 = 10 \\

\rm \: a + (4 - 1)d = 10 \\

\rm\implies \:a + 3d = 10 -  -  - (1) \\

and

\rm \: t_8 = 30 \\

\rm \: a + (8 - 1)d = 30 \\

\rm\implies \:a + 7d = 30 -  -  - (2) \\

On Subtracting equation (1) from equation (2), we get

\rm \: (a + 7d) - (a + 3d) = 20 \\

\rm \: a + 7d - a  -  3d = 20 \\

\rm \: 4d = 20 \\

\rm\implies \:d = 5 \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Similar questions