Math, asked by MathMaster2005, 10 months ago

if tan 0=a/b then the value of a sin 0 + b cos 0/a sin 0-b cos 0 is

Answers

Answered by Anonymous
27

AnswEr :

Given that,

 \sf \:  tan( \alpha )  =  \dfrac{a}{b}

To finD :

 \sf \:  \dfrac{a sin( \alpha )  + b cos( \alpha ) }{a sin( \alpha )  - b cos( \alpha ) }

Since,

sin∅/cos∅ = tan∅

Dividing the Numerator and Denominator by cos(alpha)

 \longrightarrow \:  \sf \:  \dfrac{a \: tan( \alpha ) + b}{a tan( \alpha )  - b}  \\  \\  \longrightarrow \sf  \dfrac{a \times  \dfrac{a}{b}  + b}{a \times  \dfrac{a}{b}  - b}  \\  \\  \longrightarrow \:  \sf \:  \dfrac{ \dfrac{ {a}^{2} +  {b}^{2}  }{b} }{  \dfrac{ {a}^{2} -  {b}^{2}  }{b}  }  \\  \\  \longrightarrow \boxed{   \sf \:  \dfrac{ {a}^{2} +   {b}^{2} }{ {a}^{2}  -  {b}^{2} } }

Similar questions