Math, asked by dkstr, 1 month ago

if tan ^-1 (1/2) + tan^-1 (2/11) = tan ^-1 a. Then a is​

Answers

Answered by ramnathkapdi2003
0

Answer:

,99 because 6+aa is 99 :::

Answered by SweetLily
3

Question

 \sf{tan ^{-1}  \:  \dfrac{1}{2}+ tan^{-1}   \: \dfrac{2}{11}= tan ^{-1}a.}

Topic -

  • Inverse trigonometry

Formula used -

 \sf{ \bull \: tan^{-1} x+  tan^{ - 1}y= tan^{-1}  \: \dfrac{x+y}{1-(x×y)}}

Solution

Using the formula first we will solve the L.H.S so,

 \sf{\implies tan^{-1} \:  \dfrac{1}{2}+  tan^{-1}  \: \dfrac{2}{11}= tan^{-1} \:  \dfrac{\frac{1}{2}+\frac{2}{11} }{1- \bigg(\frac{1}{2}×\frac{2}{11} \bigg)}}

\sf{\implies   \:  \:  tan^{-1} \:   \:  \dfrac{ \frac{11 + 4}{22}}{1 -  \frac{2}{22}}}

\sf{\implies   \:  \:  tan^{-1} \:   \:  \dfrac{ \frac{15}{22}}{ \frac{22 - 2}{22} } }

\sf{\implies   \:  \:  {tan^{-1} \:   \:  \frac{15}{20} }} \\  \\   \sf{\implies \red{ tan^{-1} \:  \dfrac{3}{4} }}

 \sf{ \to \: R.H.S \:  is  \: given \:  as \:   tan^{-1} a}

 \sf{  \implies \: tan^{-1} a = tan^{-1} \:  \dfrac{3}{4} } \\  \\  \bold{ \implies \:  \green{a =  \frac{3}{4} }}

so the value of a is 3/4

______________________________

Similar questions